Find gradient at a point - given gradient condition

Find coordinates of a point where the gradient equals a specified value. Requires solving dy/dx = k for some constant k to find the x-coordinate first.

10 questions · Standard +0.4

Sort by: Default | Easiest first | Hardest first
CAIE P3 2011 June Q10
11 marks Standard +0.8
10
\includegraphics[max width=\textwidth, alt={}, center]{76371b0f-0145-4cc4-a147-27bcd749816a-3_451_933_1777_605} The diagram shows the curve \(y = x ^ { 2 } \mathrm { e } ^ { - x }\).
  1. Show that the area of the shaded region bounded by the curve, the \(x\)-axis and the line \(x = 3\) is equal to \(2 - \frac { 17 } { \mathrm { e } ^ { 3 } }\).
  2. Find the \(x\)-coordinate of the maximum point \(M\) on the curve.
  3. Find the \(x\)-coordinate of the point \(P\) at which the tangent to the curve passes through the origin.
CAIE P3 2017 June Q5
6 marks Standard +0.3
5 A curve has equation \(y = \frac { 2 } { 3 } \ln \left( 1 + 3 \cos ^ { 2 } x \right)\) for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
  1. Express \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\tan x\).
  2. Hence find the \(x\)-coordinate of the point on the curve where the gradient is - 1 . Give your answer correct to 3 significant figures.
CAIE P3 2019 June Q4
7 marks Standard +0.3
4 Find the exact coordinates of the point on the curve \(y = \frac { x } { 1 + \ln x }\) at which the gradient of the tangent is equal to \(\frac { 1 } { 4 }\).
CAIE P2 2019 November Q3
5 marks Standard +0.3
3 A curve has equation \(y = \frac { 3 + 2 \ln x } { 1 + \ln x }\). Find the exact gradient of the curve at the point for which \(y = 4\).
OCR C3 Specimen Q8
10 marks Standard +0.8
8
\includegraphics[max width=\textwidth, alt={}, center]{b6b6e55a-a5ba-466c-ac9f-b5ef5bca7a3c-4_476_608_287_756} The diagram shows the curve \(y = ( \ln x ) ^ { 2 }\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
  2. The point \(P\) on the curve is the point at which the gradient takes its maximum value. Show that the tangent at \(P\) passes through the point \(( 0 , - 1 )\).
OCR MEI C3 Q4
18 marks Challenging +1.2
4 Fig. 9 shows the curve \(y = x \mathrm { e } ^ { - 2 x }\) together with the straight line \(y = m x\), where \(m\) is a constant, with \(0 < m < 1\). The curve and the line meet at O and P . The dashed line is the tangent at P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6ea594c5-52ba-4467-a098-cb66004b5a38-2_431_977_728_602} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show that the \(x\)-coordinate of P is \(- \frac { 1 } { 2 } \ln m\).
  2. Find, in terms of \(m\), the gradient of the tangent to the curve at P . You are given that OP and this tangent are equally inclined to the \(x\)-axis.
  3. Show that \(m = \mathrm { e } ^ { - 2 }\), and find the exact coordinates of P .
  4. Find the exact area of the shaded region between the line OP and the curve.
OCR MEI C3 Q2
18 marks Challenging +1.2
2 Fig. 9 shows the curve \(y = x \mathrm { e } ^ { - 2 x }\) together with the straight line \(y = m x\), where \(m\) is a constant, with \(0 < m < 1\). The curve and the line meet at O and P . The dashed line is the tangent at P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d1206ce8-7716-4205-b98e-664e7ead8a25-2_433_979_472_591} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show that the \(x\)-coordinate of P is \(- \frac { 1 } { 2 } \ln m\).
  2. Find, in terms of \(m\), the gradient of the tangent to the curve at P . You are given that OP and this tangent are equally inclined to the \(x\)-axis.
  3. Show that \(m = \mathrm { e } ^ { - 2 }\), and find the exact coordinates of P .
  4. Find the exact area of the shaded region between the line OP and the curve. END OF QUESTION PAPER
OCR MEI C3 2014 June Q9
18 marks Standard +0.8
9 Fig. 9 shows the curve \(y = x \mathrm { e } ^ { - 2 x }\) together with the straight line \(y = m x\), where \(m\) is a constant, with \(0 < m < 1\). The curve and the line meet at O and P . The dashed line is the tangent at P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c1a06289-d9e9-4f6b-ab58-70db1a4748ef-4_424_972_383_559} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show that the \(x\)-coordinate of P is \(- \frac { 1 } { 2 } \ln m\).
  2. Find, in terms of \(m\), the gradient of the tangent to the curve at P . You are given that OP and this tangent are equally inclined to the \(x\)-axis.
  3. Show that \(m = \mathrm { e } ^ { - 2 }\), and find the exact coordinates of P .
  4. Find the exact area of the shaded region between the line OP and the curve. \section*{END OF QUESTION PAPER} \section*{OCR \(^ { \text {N } }\)}
AQA AS Paper 2 Specimen Q9
5 marks Moderate -0.8
9 A curve has equation \(y = \mathrm { e } ^ { 2 x }\)
Find the coordinates of the point on the curve where the gradient of the curve is \(\frac { 1 } { 2 }\) Give your answer in an exact form.
[0pt] [5 marks]
David has been investigating the population of rabbits on an island during a three-year period. Based on data that he has collected, David decides to model the population of rabbits, \(R\), by the formula $$R = 50 \mathrm { e } ^ { 0.5 t }$$ where \(t\) is the time in years after 1 January 2016.
AQA Paper 3 2023 June Q5
3 marks Moderate -0.8
5 A curve has equation \(y = 3 \mathrm { e } ^ { 2 x }\) Find the gradient of the curve at the point where \(y = 10\)