Edexcel
C4
2007
January
Q6
6 marks
Moderate -0.3
6. (a) Given that \(y = 2 ^ { x }\), and using the result \(2 ^ { x } = \mathrm { e } ^ { x \ln 2 }\), or otherwise, show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 ^ { x } \ln 2\).
(b) Find the gradient of the curve with equation \(y = 2 ^ { \left( x ^ { 2 } \right) }\) at the point with coordinates \(( 2,16 )\).
Edexcel
C4
Q3
6 marks
Moderate -0.5
3. (a) Given that \(a ^ { x } = \mathrm { e } ^ { k x }\), where \(a\) and \(k\) are constants, \(a > 0\) and \(x \in \mathbb { R }\), prove that \(k = \ln a\).
(b) Hence, using the derivative of \(\mathrm { e } ^ { k x }\), prove that when \(y = 2 ^ { x }\),
$$\frac { \mathrm { d } y } { \mathrm { dx } } = 2 ^ { x } \ln 2 .$$
(c) Hence deduce that the gradient of the curve with equation \(y = 2 ^ { x }\) at the point \(( 2,4 )\) is \(\ln 16\).