Implicit differentiation

Given x as a function of y (or an implicit relation), find dy/dx using the chain rule and reciprocal relationship.

1 questions · Standard +0.3

Sort by: Default | Easiest first | Hardest first
Edexcel C3 Q4
11 marks Standard +0.3
  1. (a) Given that
$$x = \sec \frac { y } { 2 } , \quad 0 \leq y < \pi ,$$ show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 } { x \sqrt { x ^ { 2 } - 1 } } .$$ (b) Find an equation for the tangent to the curve \(y = \sqrt { 3 + 2 \cos x }\) at the point where \(x = \frac { \pi } { 3 }\).