Differentiate inverse trigonometric functions

Find the derivative of functions involving arcsin, arccos, arctan, or their compositions with other functions.

7 questions · Standard +0.1

Sort by: Default | Easiest first | Hardest first
OCR Further Pure Core 1 2024 June Q1
3 marks Moderate -0.5
1 Given that \(y = \sin ^ { - 1 } \left( x ^ { 2 } \right)\), find \(\frac { d y } { d x }\).
AQA C3 2011 January Q3
6 marks Moderate -0.3
3
  1. Given that \(x = \tan ( 3 y + 1 )\) :
    1. find \(\frac { \mathrm { d } x } { \mathrm {~d} y }\) in terms of \(y\);
    2. find the value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) when \(y = - \frac { 1 } { 3 }\).
  2. Sketch the graph of \(y = \tan ^ { - 1 } x\).
AQA C3 2006 June Q9
7 marks Standard +0.3
9 The diagram shows the curve with equation \(y = \sin ^ { - 1 } 2 x\), where \(- \frac { 1 } { 2 } \leqslant x \leqslant \frac { 1 } { 2 }\).
\includegraphics[max width=\textwidth, alt={}, center]{0ab0e757-270b-4c15-9202-9df2f02dddf3-4_790_752_906_644}
  1. Find the \(y\)-coordinate of the point \(A\), where \(x = \frac { 1 } { 2 }\).
    1. Given that \(y = \sin ^ { - 1 } 2 x\), show that \(x = \frac { 1 } { 2 } \sin y\).
    2. Given that \(x = \frac { 1 } { 2 } \sin y\), find \(\frac { \mathrm { d } x } { \mathrm {~d} y }\) in terms of \(y\).
  2. Using the answers to part (b) and a suitable trigonometrical identity, show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 } { \sqrt { 1 - 4 x ^ { 2 } } }$$
OCR MEI Further Pure Core 2021 November Q2
4 marks Standard +0.3
2 In this question you must show detailed reasoning.
Find the gradient of the curve \(y = 6 \arcsin ( 2 x )\) at the point with \(x\)-coordinate \(\frac { 1 } { 4 }\). Express the result in the form \(\mathrm { m } \sqrt { \mathrm { n } }\), where \(m\) and \(n\) are integers.
WJEC Further Unit 4 2022 June Q11
15 marks Standard +0.8
11. (a) Differentiate each of the following with respect to \(x\).
  1. \(y = \mathrm { e } ^ { 3 x } \sin ^ { - 1 } x\)
  2. \(y = \ln \left( \cosh ^ { 2 } \left( 2 x ^ { 2 } + 7 x \right) \right)\)
    (b) Find the equations of the tangents to the curve \(x = \sinh ^ { - 1 } \left( y ^ { 2 } \right)\) at the points where \(x = 1\).
WJEC Further Unit 4 2023 June Q10
8 marks Moderate -0.3
10. (a) By writing \(y = \sin ^ { - 1 } ( 2 x + 5 )\) as \(\sin y = 2 x + 5\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 } { \sqrt { 1 - ( 2 x + 5 ) ^ { 2 } } }\).
(b) Deduce the range of values of \(x\) for which \(\frac { \mathrm { d } } { \mathrm { d } x } \left( \sin ^ { - 1 } ( 2 x + 5 ) \right)\) is valid.
Edexcel CP2 2022 June Q5
6 marks Standard +0.3
  1. (a) Given that
$$y = \arcsin x \quad - 1 \leqslant x \leqslant 1$$ show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sqrt { 1 - x ^ { 2 } } }$$ (b) $$\mathrm { f } ( x ) = \arcsin \left( \mathrm { e } ^ { x } \right) \quad x \leqslant 0$$ Prove that \(\mathrm { f } ( x )\) has no stationary points.