Integration using chain rule reversal

Questions requiring integration of composite functions by recognizing them as derivatives of chain rule expressions, or using substitution.

2 questions · Moderate -0.2

Sort by: Default | Easiest first | Hardest first
Edexcel P3 2023 June Q3
7 marks Standard +0.3
  1. (i) Find \(\frac { \mathrm { d } } { \mathrm { d } x } \ln \left( \sin ^ { 2 } 3 x \right)\) writing your answer in simplest form.
    (ii) (a) Find \(\frac { \mathrm { d } } { \mathrm { d } x } \left( 3 x ^ { 2 } - 4 \right) ^ { 6 }\)
    (b) Hence show that
$$\int _ { 0 } ^ { \sqrt { 2 } } x \left( 3 x ^ { 2 } - 4 \right) ^ { 5 } \mathrm {~d} x = R$$ where \(R\) is an integer to be found.
(Solutions relying on calculator technology are not acceptable.)
OCR MEI Paper 2 2019 June Q2
4 marks Moderate -0.8
2 Given that \(y = \left( x ^ { 2 } + 5 \right) ^ { 12 }\),
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Hence find \(\int 48 x \left( x ^ { 2 } + 5 \right) ^ { 11 } \mathrm {~d} x\).