Parametric differentiation

Questions where x and y are given as functions of a parameter t, requiring dy/dx = (dy/dt)/(dx/dt) using the chain rule.

4 questions · Standard +0.1

Sort by: Default | Easiest first | Hardest first
Edexcel P3 2023 October Q10
9 marks Standard +0.3
  1. In this question you must show all stages of your working. Solutions relying on calculator technology are not acceptable.
A curve \(C\) has equation $$x = \sin ^ { 2 } 4 y \quad 0 \leqslant y \leqslant \frac { \pi } { 8 } \quad 0 \leqslant x \leqslant 1$$ The point \(P\) with \(x\) coordinate \(\frac { 1 } { 4 }\) lies on \(C\)
  1. Find the exact \(y\) coordinate of \(P\)
  2. Find \(\frac { \mathrm { d } x } { \mathrm {~d} y }\)
  3. Hence show that \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) can be written in the form $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sqrt { q + r ( x + s ) ^ { 2 } } }$$ where \(q , r\) and \(s\) are constants to be found. Using the answer to part (c),
    1. state the \(x\) coordinate of the point where the value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) is a minimum,
    2. state the value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) at this point.
Edexcel C3 2013 June Q5
10 marks Standard +0.3
  1. Given that
$$x = \sec ^ { 2 } 3 y , \quad 0 < y < \frac { \pi } { 6 }$$
  1. find \(\frac { \mathrm { d } x } { \mathrm {~d} y }\) in terms of \(y\).
  2. Hence show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 6 x ( x - 1 ) ^ { \frac { 1 } { 2 } } }$$
  3. Find an expression for \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) in terms of \(x\). Give your answer in its simplest form.
OCR C3 2007 January Q4
7 marks Moderate -0.3
4
  1. Given that \(x = ( 4 t + 9 ) ^ { \frac { 1 } { 2 } }\) and \(y = 6 \mathrm { e } ^ { \frac { 1 } { 2 } x + 1 }\), find expressions for \(\frac { \mathrm { d } x } { \mathrm {~d} t }\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Hence find the value of \(\frac { \mathrm { d } y } { \mathrm {~d} t }\) when \(t = 4\), giving your answer correct to 3 significant figures.
AQA C4 2016 June Q7
9 marks Standard +0.3
  1. Find the exact value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) at the point on \(C\) where \(t = \frac { 2 } { 3 }\).
  2. Show that \(x = \frac { 4 - \mathrm { e } ^ { 2 - 6 t } } { 4 }\) can be rearranged into the form \(\mathrm { e } ^ { 3 t } = \frac { \mathrm { e } } { 2 \sqrt { ( 1 - x ) } }\).
  3. Hence find the Cartesian equation of \(C\), giving your answer in the form $$y = \frac { \mathrm { e } } { \mathrm { f } ( x ) [ 1 - \ln ( \mathrm { f } ( x ) ) ] }$$