OCR MEI
C3
2010
January
Q3
7 marks
Moderate -0.3
3
- Given that \(y = \sqrt [ 3 ] { 1 + 3 x ^ { 2 } }\), use the chain rule to find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\).
- Given that \(y ^ { 3 } = 1 + 3 x ^ { 2 }\), use implicit differentiation to find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). Show that this result is equivalent to the result in part (i).