Second derivative and nature determination

Questions requiring finding d²y/dx² and using it to determine the nature of stationary points or to analyze concavity properties of the curve.

14 questions · Moderate -0.8

Sort by: Default | Easiest first | Hardest first
CAIE P1 2017 March Q7
8 marks Moderate -0.3
7 The function f is defined for \(x \geqslant 0\) by \(\mathrm { f } ( x ) = ( 4 x + 1 ) ^ { \frac { 3 } { 2 } }\).
  1. Find \(\mathrm { f } ^ { \prime } ( x )\) and \(\mathrm { f } ^ { \prime \prime } ( x )\).
    The first, second and third terms of a geometric progression are respectively \(\mathrm { f } ( 2 ) , \mathrm { f } ^ { \prime } ( 2 )\) and \(k \mathrm { f } ^ { \prime \prime } ( 2 )\).
  2. Find the value of the constant \(k\).
Edexcel P1 2023 October Q1
5 marks Easy -1.3
  1. Given that
$$y = 5 x ^ { 3 } + \frac { 3 } { x ^ { 2 } } - 7 x \quad x > 0$$ find, in simplest form,
  1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
  2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\)
Edexcel FP3 Q4
9 marks Challenging +1.2
4. \(y = \arctan ( \sqrt { } x ) , \quad x > 0,0 < y < \frac { \pi } { 2 }\).
  1. Find the value of \(\frac { \mathrm { dy } } { \mathrm { dx } }\) at \(\mathrm { x } = \frac { 1 } { 4 }\).
  2. Show that \(2 x ( 1 + x ) \frac { d ^ { 2 } y } { d x ^ { 2 } } + ( 1 + 3 x ) \frac { d y } { d x } = 0\).
Edexcel M2 2014 January Q2
5 marks Easy -1.3
2. $$y = 2 x ^ { 2 } - \frac { 4 } { \sqrt { } x } + 1 , \quad x > 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), giving each term in its simplest form.
  2. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\), giving each term in its simplest form.
    \includegraphics[max width=\textwidth, alt={}, center]{e6a4beaa-2c1f-4a98-bc63-4ddb8611db45-05_104_97_2613_1784}
OCR C1 2010 January Q9
8 marks Moderate -0.8
9 Given that \(\mathrm { f } ( x ) = \frac { 1 } { x } - \sqrt { x } + 3\),
  1. find \(\mathrm { f } ^ { \prime } ( x )\),
  2. find \(\mathrm { f } ^ { \prime \prime } ( 4 )\).
OCR C1 2012 January Q6
7 marks Moderate -0.8
6 Given that \(\mathrm { f } ( x ) = \frac { 4 } { x } - 3 x + 2\),
  1. find \(\mathrm { f } ^ { \prime } ( x )\),
  2. find \(\mathrm { f } ^ { \prime \prime } \left( \frac { 1 } { 2 } \right)\).
OCR C1 2009 June Q1
5 marks Easy -1.2
1 Given that \(y = x ^ { 5 } + \frac { 1 } { x ^ { 2 } }\), find
  1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
  2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
OCR C1 2013 June Q3
5 marks Moderate -0.8
3 It is given that \(\mathrm { f } ( x ) = \frac { 6 } { x ^ { 2 } } + 2 x\).
  1. Find \(\mathrm { f } ^ { \prime } ( x )\).
  2. Find \(\mathrm { f } ^ { \prime \prime } ( x )\).
Edexcel Paper 2 2024 June Q1
5 marks Easy -1.8
1. $$y = 4 x ^ { 3 } - 7 x ^ { 2 } + 5 x - 10$$
  1. Find in simplest form
    1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
    2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\)
  2. Hence find the exact value of \(x\) when \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 0\)
OCR MEI Paper 1 2020 November Q4
5 marks Moderate -0.3
4 Find the second derivative of \(\left( x ^ { 2 } + 5 \right) ^ { 4 }\), giving your answer in factorised form.
AQA AS Paper 1 2021 June Q2
1 marks Easy -1.8
2 Given that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { x }\) find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\)
Circle your answer.
\(- \frac { 2 } { x ^ { 2 } }\)
\(- \frac { 1 } { x ^ { 2 } }\)
\(\frac { 1 } { x ^ { 2 } }\)
\(\frac { 2 } { x ^ { 2 } }\)
AQA AS Paper 1 2021 June Q9
7 marks Standard +0.3
9 A curve has equation $$y = \frac { a } { \sqrt { x } } + b x ^ { 2 } + \frac { c } { x ^ { 3 } } \quad \text { for } x > 0$$ where \(a\), \(b\) and \(c\) are positive constants.
The curve has a single turning point.
Use the second derivative of \(y\) to determine the nature of this turning point.
You do not need to find the coordinates of the turning point.
Fully justify your answer.
AQA AS Paper 2 2020 June Q3
3 marks Easy -1.2
3 It is given that $$y = 3 x ^ { 4 } + \frac { 2 } { x } - \frac { x } { 4 } + 1$$ Find an expression for \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\)
[0pt] [3 marks]
AQA AS Paper 2 2022 June Q3
5 marks Moderate -0.8
3 A curve has equation \(y = k \sqrt { x }\) where \(k\) is a constant. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(( 4,2 k )\) on the curve, giving your answer as an expression in terms of \(k\).