Equation of tangent or normal

Questions asking to find the equation of a tangent or normal line to a curve at a specified point, requiring differentiation to find the gradient.

34 questions · Moderate -0.1

Sort by: Default | Easiest first | Hardest first
AQA C2 2005 June Q7
9 marks Moderate -0.8
7 A curve is defined, for \(x > 0\), by the equation \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = \frac { x ^ { 8 } - 1 } { x ^ { 3 } }$$
  1. Express \(\frac { x ^ { 8 } - 1 } { x ^ { 3 } }\) in the form \(x ^ { p } - x ^ { q }\), where \(p\) and \(q\) are integers.
    1. Hence differentiate \(\mathrm { f } ( x )\) to find \(\mathrm { f } ^ { \prime } ( x )\).
    2. Hence show that f is an increasing function.
  2. Find the gradient of the normal to the curve at the point \(( 1,0 )\).
Edexcel C3 Q8
14 marks Standard +0.8
8. The curve \(C\) has the equation \(y = \sqrt { x } + \mathrm { e } ^ { 1 - 4 x } , x \geq 0\).
  1. Find an equation for the normal to the curve at the point \(\left( \frac { 1 } { 4 } , \frac { 3 } { 2 } \right)\). The curve \(C\) has a stationary point with \(x\)-coordinate \(\alpha\) where \(0.5 < \alpha < 1\).
  2. Show that \(\alpha\) is a solution of the equation $$x = \frac { 1 } { 4 } [ 1 + \ln ( 8 \sqrt { x } ) ]$$
  3. Use the iteration formula $$x _ { n + 1 } = \frac { 1 } { 4 } \left[ 1 + \ln \left( 8 \sqrt { x _ { n } } \right) \right]$$ with \(x _ { 0 } = 1\) to find \(x _ { 1 } , x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\), giving the value of \(x _ { 4 }\) to 3 decimal places.
  4. Show that your value for \(x _ { 4 }\) is the value of \(\alpha\) correct to 3 decimal places.
  5. Another attempt to find \(\alpha\) is made using the iteration formula $$x _ { n + 1 } = \frac { 1 } { 64 } \mathrm { e } ^ { 8 x _ { n } - 2 }$$ with \(x _ { 0 } = 1\). Describe the outcome of this attempt.
Edexcel C3 Q8
14 marks Standard +0.3
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d17a1b86-d758-4470-834a-b32a41f90c89-4_478_937_251_450} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve with equation \(y = 2 x - 3 \ln ( 2 x + 5 )\) and the normal to the curve at the point \(P ( - 2 , - 4 )\).
  1. Find an equation for the normal to the curve at \(P\). The normal to the curve at \(P\) intersects the curve again at the point \(Q\) with \(x\)-coordinate \(q\).
  2. Show that \(1 < q < 2\).
  3. Show that \(q\) is a solution of the equation $$x = \frac { 12 } { 7 } \ln ( 2 x + 5 ) - 2 .$$
  4. Use the iterative formula $$x _ { n + 1 } = \frac { 12 } { 7 } \ln \left( 2 x _ { n } + 5 \right) - 2 ,$$ with \(x _ { 0 } = 1.5\), to find the value of \(q\) to 3 significant figures and justify the accuracy of your answer.
Edexcel C3 Q8
13 marks Standard +0.3
8. A curve has the equation \(y = x ^ { 2 } - \sqrt { 4 + \ln x }\).
  1. Show that the tangent to the curve at the point where \(x = 1\) has the equation $$7 x - 4 y = 11$$ The curve has a stationary point with \(x\)-coordinate \(\alpha\).
  2. Show that \(0.3 < \alpha < 0.4\)
  3. Show that \(\alpha\) is a solution of the equation $$x = \frac { 1 } { 2 } ( 4 + \ln x ) ^ { - \frac { 1 } { 4 } }$$
  4. Use the iteration formula $$x _ { n + 1 } = \frac { 1 } { 2 } \left( 4 + \ln x _ { n } \right) ^ { - \frac { 1 } { 4 } }$$ with \(x _ { 0 } = 0.35\), to find \(x _ { 1 } , x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\), giving your answers to 5 decimal places. END
Edexcel C3 Q4
8 marks Standard +0.2
4. The curve \(C\) has the equation \(y = x ^ { 2 } - 5 x + 2 \ln \frac { x } { 3 } , x > 0\).
  1. Show that the normal to \(C\) at the point where \(x = 3\) has the equation $$3 x + 5 y + 21 = 0$$
  2. Find the \(x\)-coordinates of the stationary points of \(C\).
Edexcel C4 Q7
12 marks Standard +0.3
7. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 3} \includegraphics[alt={},max width=\textwidth]{a1b078fe-96e3-4d62-bf0d-415294ba022f-6_805_1445_269_230}
\end{figure} The curve \(C\) with equation \(y = 2 \mathrm { e } ^ { x } + 5\) meets the \(y\)-axis at the point \(M\), as shown in Fig. 3 .
  1. Find the equation of the normal to \(C\) at \(M\) in the form \(a x + b y = c\), where \(a , b\) and \(c\) are integers. This normal to \(C\) at \(M\) crosses the \(x\)-axis at the point \(N ( n , 0 )\).
  2. Show that \(n = 14\). The point \(P ( \ln 4,13 )\) lies on \(C\). The finite region \(R\) is bounded by \(C\), the axes and the line \(P N\), as shown in Fig. 3.
  3. Find the area of \(R\), giving your answers in the form \(p + q \ln 2\), where \(p\) and \(q\) are integers to be found.
AQA C2 2007 June Q5
12 marks Moderate -0.8
5 A curve is defined for \(x > 0\) by the equation $$y = \left( 1 + \frac { 2 } { x } \right) ^ { 2 }$$ The point \(P\) lies on the curve where \(x = 2\).
  1. Find the \(y\)-coordinate of \(P\).
  2. Expand \(\left( 1 + \frac { 2 } { x } \right) ^ { 2 }\).
  3. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  4. Hence show that the gradient of the curve at \(P\) is - 2 .
  5. Find the equation of the normal to the curve at \(P\), giving your answer in the form \(x + b y + c = 0\), where \(b\) and \(c\) are integers.
AQA AS Paper 1 2020 June Q8
8 marks Standard +0.3
8
  1. Find the equation of the tangent to the curve \(y = \mathrm { e } ^ { 4 x }\) at the point ( \(a , \mathrm { e } ^ { 4 a }\) ).
    8
  2. Find the value of \(a\) for which this tangent passes through the origin.
    8
  3. Hence, find the set of values of \(m\) for which the equation
    has no real solutions. $$\mathrm { e } ^ { 4 x } = m x$$ has no real solutions.
    [0pt] [3 marks]
AQA Paper 2 2023 June Q4
7 marks Moderate -0.8
4 A curve has equation $$y = \frac { x ^ { 2 } } { 8 } + 4 \sqrt { x }$$ 4
  1. Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
    4
  2. The point \(P\) with coordinates \(( 4,10 )\) lies on the curve.
    Find an equation of the tangent to the curve at the point \(P\)

    4
  3. Show that the curve has no stationary points.