Range of rational function with harmonic denominator

A question is this type if and only if it asks for the maximum, minimum, or range of a rational function where the denominator contains a harmonic expression, such as k/(a + b·sin + c·cos).

2 questions · Standard +0.6

Sort by: Default | Easiest first | Hardest first
Edexcel PMT Mocks Q9
5 marks Standard +0.8
9. $$\mathrm { f } ( \theta ) = 4 \cos \theta + 5 \sin \theta \quad \theta \in R$$ a. Express \(\mathrm { f } ( \theta )\) in the form \(R \cos ( \theta - \alpha )\) where \(R\) and \(\alpha\) are constants, \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\). Give the exact value of \(R\) and give the value of \(\alpha\), in radians, to 3 decimal places. Given that $$\mathrm { g } ( \theta ) = \frac { 135 } { 4 + \mathrm { f } ( \theta ) ^ { 2 } } \quad \theta \in R$$ b.find the range of \(g\).
OCR MEI Paper 3 Specimen Q9
7 marks Standard +0.3
9
  1. Express \(\cos \theta + 2 \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(0 < \alpha < \frac { 1 } { 2 } \pi\) and \(R\) is positive and given in exact form. The function \(\mathrm { f } ( \theta )\) is defined by \(\mathrm { f } ( \theta ) = \frac { 1 } { ( k + \cos \theta + 2 \sin \theta ) } , 0 \leq \theta \leq 2 \pi , k\) is a constant.
  2. The maximum value of \(\mathrm { f } ( \theta )\) is \(\frac { ( 3 + \sqrt { 5 } ) } { 4 }\). Find the value of \(k\).