Multiple independent equations

Solve two or more completely separate trigonometric equations (e.g., part (i) and part (ii) with unrelated equations), each requiring independent solution methods.

38 questions · Moderate -0.2

Sort by: Default | Easiest first | Hardest first
OCR C2 2011 January Q7
8 marks Moderate -0.3
7 Solve each of the following equations for \(0 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\).
  1. \(3 \tan 2 x = 1\)
  2. \(3 \cos ^ { 2 } x + 2 \sin x - 3 = 0\)
OCR C2 2009 June Q5
8 marks Moderate -0.3
5 Solve each of the following equations for \(0 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\).
  1. \(\sin 2 x = 0.5\)
  2. \(2 \sin ^ { 2 } x = 2 - \sqrt { 3 } \cos x\)
OCR C2 2013 June Q2
6 marks Moderate -0.3
2 Solve each of the following equations, for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
  1. \(\sin \frac { 1 } { 2 } x = 0.8\)
  2. \(\sin x = 3 \cos x\)
Edexcel AS Paper 1 Q12
5 marks Standard +0.3
12. a. Explain mathematically why there are no values of \(\theta\) that satisfy the equation $$( 3 \cos \theta - 4 ) ( 2 \cos \theta + 5 ) = 0$$ b. Giving your solutions to one decimal place, where appropriate, solve the equation $$3 \sin y + 2 \tan y = 0 \quad \text { for } 0 \leq y \leq \pi$$ (Solutions based entirely on graphical or numerical methods are not acceptable.)
OCR PURE 2018 May Q3
6 marks Moderate -0.8
3
  1. Solve the equation \(\sin ^ { 2 } \theta = 0.25\) for \(0 ^ { \circ } \leqslant \theta < 360 ^ { \circ }\).
  2. In this question you must show detailed reasoning. Solve the equation \(\tan 3 \phi = \sqrt { 3 }\) for \(0 ^ { \circ } \leqslant \phi < 90 ^ { \circ }\).
OCR PURE 2022 May Q4
8 marks Moderate -0.3
4 In this question you must show detailed reasoning. Solve the following equations, for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
  1. \(2 \tan x + 1 = 4\)
  2. \(5 \sin x - 1 = 2 \cos ^ { 2 } x\)
AQA C2 2008 June Q9
8 marks Moderate -0.3
9
  1. Solve the equation \(\sin 2 x = \sin 48 ^ { \circ }\), giving the values of \(x\) in the interval \(0 ^ { \circ } \leqslant x < 360 ^ { \circ }\).
  2. Solve the equation \(2 \sin \theta - 3 \cos \theta = 0\) in the interval \(0 ^ { \circ } \leqslant \theta < 360 ^ { \circ }\), giving your answers to the nearest \(0.1 ^ { \circ }\).
Edexcel C2 Q3
8 marks Moderate -0.8
3. Find all values of \(\theta\) in the interval \(0 \leq \theta < 360\) for which
  1. \(\cos ( \theta + 75 ) ^ { \circ } = 0\).
  2. \(\sin 2 \theta ^ { \circ } = 0.7\), giving your answers to one decima1 place.
Edexcel C2 Q3
6 marks Moderate -0.8
3. (a) Given that $$5 \cos \theta - 2 \sin \theta = 0 ,$$ show that \(\tan \theta = 2.5\) (b) Solve, for \(0 \leq x \leq 180\), the equation $$5 \cos 2 x ^ { \circ } - 2 \sin 2 x ^ { \circ } = 0 ,$$ giving your answers to 1 decimal place.
Edexcel C2 Q7
10 marks Standard +0.3
7. (a) Find, to 2 decimal places, the values of \(x\) in the interval \(0 \leq x < 2 \pi\) for which $$\tan \left( x + \frac { \pi } { 4 } \right) = 3 .$$ (b) Find, in terms of \(\pi\), the values of \(y\) in the interval \(0 \leq y < 2 \pi\) for which $$2 \sin y = \tan y .$$
Edexcel C3 Q1
8 marks Moderate -0.3
  1. (a) Find the exact value of \(x\) such that
$$3 \arctan ( x - 2 ) + \pi = 0$$ (b) Solve, for \(- \pi < \theta < \pi\), the equation $$\cos 2 \theta - \sin \theta - 1 = 0$$ giving your answers in terms of \(\pi\).
AQA C3 2009 January Q4
8 marks Moderate -0.3
4
  1. Solve the equation \(\sec x = \frac { 3 } { 2 }\), giving all values of \(x\) to the nearest degree in the interval \(0 ^ { \circ } < x < 360 ^ { \circ }\).
  2. By using a suitable trigonometrical identity, solve the equation $$2 \tan ^ { 2 } x = 10 - 5 \sec x$$ giving all values of \(x\) to the nearest degree in the interval \(0 ^ { \circ } < x < 360 ^ { \circ }\).
AQA C3 2010 January Q3
8 marks Moderate -0.3
3
  1. Solve the equation $$\operatorname { cosec } x = 3$$ giving all values of \(x\) in radians to two decimal places, in the interval \(0 \leqslant x \leqslant 2 \pi\).
    (2 marks)
  2. By using a suitable trigonometric identity, solve the equation $$\cot ^ { 2 } x = 11 - \operatorname { cosec } x$$ giving all values of \(x\) in radians to two decimal places, in the interval \(0 \leqslant x \leqslant 2 \pi\).
    (6 marks)