Multiple choice transformation

A question is this type if and only if it presents transformation scenarios with multiple choice answers (equations or descriptions).

5 questions

AQA AS Paper 1 Specimen Q1
1 marks
1 The curve \(y = \sqrt { x }\) is translated onto the curve \(y = \sqrt { x + 4 }\)
The translation is described by a vector.
Find this vector.
Circle your answer.
[0pt] [1 mark] $$\left[ \begin{array} { l } 4
0 \end{array} \right] \quad \left[ \begin{array} { c } - 4
0 \end{array} \right] \quad \left[ \begin{array} { l } 0
4 \end{array} \right] \quad \left[ \begin{array} { c } 0
- 4 \end{array} \right]$$
OCR H240/02 2022 June Q6
6
  1. The diagrams show five different graphs. In each case the whole of the graph is shown. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{cb83836f-753f-4b3a-99e8-a18aff0f49ff-06_376_382_310_306} \captionsetup{labelformat=empty} \caption{Fig. 1.1}
    \end{figure} \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{cb83836f-753f-4b3a-99e8-a18aff0f49ff-06_376_378_310_842} \captionsetup{labelformat=empty} \caption{Fig. 1.2}
    \end{figure} \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{cb83836f-753f-4b3a-99e8-a18aff0f49ff-06_378_378_310_1379} \captionsetup{labelformat=empty} \caption{Fig. 1.3}
    \end{figure} \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{cb83836f-753f-4b3a-99e8-a18aff0f49ff-06_378_382_872_306} \captionsetup{labelformat=empty} \caption{Fig. 1.4}
    \end{figure} \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{cb83836f-753f-4b3a-99e8-a18aff0f49ff-06_378_378_872_845} \captionsetup{labelformat=empty} \caption{Fig. 1.5}
    \end{figure} Place ticks in the boxes in the table in the Printed Answer Booklet to indicate, for each graph, whether it represents a one-one function, a many-one function, a function that is its own inverse or it does not represent a function. There may be more than one tick in some rows or columns of the table.
  2. A function f is defined by \(\mathrm { f } ( x ) = \frac { 1 } { x }\) for the domain \(\{ x : 0 < x \leqslant 2 \}\). State the range of f , giving your answer in set notation.
AQA AS Paper 2 2018 June Q2
2 Figure 1 shows \(y = \mathrm { f } ( x )\). \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{8d9ace4b-0c15-48bd-9b0d-302f57ea9759-03_307_327_450_379}
\end{figure} Which figure below shows \(y = \mathrm { f } ( 2 x )\) ?
Tick one box. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{8d9ace4b-0c15-48bd-9b0d-302f57ea9759-03_309_332_1119_374}
\end{figure} Figure 3 Figure 4 Figure 5 \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 3} \includegraphics[alt={},max width=\textwidth]{8d9ace4b-0c15-48bd-9b0d-302f57ea9759-03_314_332_1119_719}
\end{figure} \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{8d9ace4b-0c15-48bd-9b0d-302f57ea9759-03_117_127_1512_799}
\end{figure} □ \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 4} \includegraphics[alt={},max width=\textwidth]{8d9ace4b-0c15-48bd-9b0d-302f57ea9759-03_314_346_1110_1064}
\end{figure} \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 5} \includegraphics[alt={},max width=\textwidth]{8d9ace4b-0c15-48bd-9b0d-302f57ea9759-03_321_341_1110_1402}
\end{figure} □
AQA Paper 1 2022 June Q3
1 marks
3 The curve $$y = \log _ { 4 } x$$ is transformed by a stretch, scale factor 2 , parallel to the \(y\)-axis.
State the equation of the curve after it has been transformed.
Circle your answer.
[0pt] [1 mark] $$y = \frac { 1 } { 2 } \log _ { 4 } x \quad y = 2 \log _ { 4 } x \quad y = \log _ { 4 } 2 x \quad y = \log _ { 8 } x$$
\includegraphics[max width=\textwidth, alt={}]{22ff390e-1360-43bd-8c7f-3d2b58627e91-03_2492_1722_217_150}
AQA Paper 1 2023 June Q3
3 The curve with equation \(y = \ln x\) is transformed by a stretch parallel to the \(x\)-axis with scale factor 2 Find the equation of the transformed curve.
Circle your answer.
\(y = \frac { 1 } { 2 } \ln x \quad y = 2 \ln x \quad y = \ln \frac { x } { 2 } \quad y = \ln 2 x\)