Integration inequality bounds

Use rectangles or trapezium rule to establish upper and lower bounds for an integral or sum.

3 questions · Challenging +1.1

Sort by: Default | Easiest first | Hardest first
OCR MEI C4 Q8
18 marks Standard +0.3
8
  1. Evaluate \(A _ { 0 } = \int _ { 0 } ^ { 2 } \left( 2 + 2 x - x ^ { 2 } \right) \mathrm { d } x\). Fig 8.1 illustrates the cross-section of a proposed tunnel. Lengths are in metres. The equation of the curved section is \(y = 2 + \sqrt { 2 x - x ^ { 2 } }\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{23771896-942c-4a1d-ab95-6b6d3cc5643c-3_419_515_1155_836} \captionsetup{labelformat=empty} \caption{Fig. 8.1}
    \end{figure} The designers need to know the area of the cross-section, \(A \mathrm {~m} ^ { 2 }\), so that they can work out the volume of the soil that will need to be removed when the tunnel is built.
  2. An initial estimate, \(A _ { 1 }\), is given by the area of the 8 rectangles shown in Fig 8.2. Calculate \(A _ { 1 }\), and state whether it is an overestimate or underestimate for \(A\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{23771896-942c-4a1d-ab95-6b6d3cc5643c-3_520_645_2053_644} \captionsetup{labelformat=empty} \caption{Fig. 8.2}
    \end{figure}
  3. On graph paper, draw the graphs of $$y = 2 + 2 x - x ^ { 2 } \text { and } y = 2 + \sqrt { 2 x - x ^ { 2 } } \text { for } 0 \leq x \leq 2 .$$ Make it clear which equation applies to which curve.
  4. State whether \(A _ { 0 }\), your answer to part (i), is an underestimate for \(A\) or an overestimate. Give a reason for your answer.
  5. The designers use the trapezium rule to estimate \(A\). What values does this give when they take
    (A) 2 strips,
    (B) 4 strips,
    (C) 8 strips? What can you conclude about the value of \(A\) ?
  6. The best estimate from the trapezium rule is denoted by \(A _ { 2 }\). State, with a reason, whether the true value of \(A\) is nearer \(A _ { 1 }\) or \(A _ { 2 }\).
OCR FP2 2006 June Q6
8 marks Challenging +1.8
6 \includegraphics[max width=\textwidth, alt={}, center]{52b43f20-e0e6-4ddd-9518-bea9782982bf-3_623_1354_262_392} The diagram shows the curve with equation \(y = 3 ^ { x }\) for \(0 \leqslant x \leqslant 1\). The area \(A\) under the curve between these limits is divided into \(n\) strips, each of width \(h\) where \(n h = 1\).
  1. By using the set of rectangles indicated on the diagram, show that \(A > \frac { 2 h } { 3 ^ { h } - 1 }\).
  2. By considering another set of rectangles, show that \(A < \frac { ( 2 h ) 3 ^ { h } } { 3 ^ { h } - 1 }\).
  3. Given that \(h = 0.001\), use these inequalities to find values between which \(A\) lies.
OCR FP2 Q7
9 marks Challenging +1.2
7 \includegraphics[max width=\textwidth, alt={}, center]{0ec9c4ff-8622-4dda-a000-6ffe36f38023-04_673_1285_1176_429} The diagram shows the curve with equation \(y = \sqrt { x }\). A set of \(N\) rectangles of unit width is drawn, starting at \(x = 1\) and ending at \(x = N + 1\), where \(N\) is an integer (see diagram).
  1. By considering the areas of these rectangles, explain why $$\sqrt { 1 } + \sqrt { 2 } + \sqrt { 3 } + \ldots + \sqrt { N } < \int _ { 1 } ^ { N + 1 } \sqrt { x } \mathrm {~d} x$$
  2. By considering the areas of another set of rectangles, explain why $$\sqrt { 1 } + \sqrt { 2 } + \sqrt { 3 } + \ldots + \sqrt { N } > \int _ { 0 } ^ { N } \sqrt { x } \mathrm {~d} x$$
  3. Hence find, in terms of \(N\), limits between which \(\sum _ { r = 1 } ^ { N } \sqrt { r }\) lies. \section*{Jan 2006}