Show definite integral equals value

Use integration to prove that a definite integral equals a specific exact value (often involving surds, π, or ln).

9 questions · Moderate -0.6

Sort by: Default | Easiest first | Hardest first
Edexcel C2 2007 June Q1
4 marks Moderate -0.8
Evaluate \(\int _ { 1 } ^ { 8 } \frac { 1 } { \sqrt { } x } \mathrm {~d} x\), giving your answer in the form \(a + b \sqrt { } 2\), where \(a\) and \(b\) are integers.
Edexcel C2 2014 June Q4
5 marks Moderate -0.8
  1. Use integration to find
$$\int _ { 1 } ^ { \sqrt { 3 } } \left( \frac { x ^ { 3 } } { 6 } + \frac { 1 } { 3 x ^ { 2 } } \right) \mathrm { d } x$$ giving your answer in the form \(a + b \sqrt { 3 }\), where \(a\) and \(b\) are constants to be determined.
Edexcel AS Paper 1 Specimen Q5
5 marks Moderate -0.5
5. Given that
show that \(\int _ { 1 } ^ { 2 \sqrt { 2 } } \mathrm { f } ( x ) \mathrm { d } x = 16 + 3 \sqrt { 2 }\) $$\mathrm { f } ( x ) = 2 x + 3 + \frac { 12 } { x ^ { 2 } } , \quad x > 0$$
OCR MEI AS Paper 2 2018 June Q6
4 marks Easy -1.2
6 Show that \(\int _ { 0 } ^ { 9 } ( 3 + 4 \sqrt { x } ) \mathrm { d } x = 99\).
AQA C2 2005 January Q4
9 marks Moderate -0.8
4
  1. Write \(\sqrt { x }\) in the form \(x ^ { k }\), where \(k\) is a fraction.
  2. Hence express \(\sqrt { x } ( x - 1 )\) in the form \(x ^ { p } - x ^ { q }\).
  3. Find \(\int \sqrt { x } ( x - 1 ) \mathrm { d } x\).
  4. Hence show that \(\int _ { 1 } ^ { 2 } \sqrt { x } ( x - 1 ) \mathrm { d } x = \frac { 4 } { 15 } ( \sqrt { 2 } + 1 )\).
Edexcel C2 Q2
6 marks Moderate -0.5
2. Show that $$\int _ { 2 } ^ { 3 } \left( 6 \sqrt { x } - \frac { 4 } { \sqrt { x } } \right) \mathrm { d } x = k \sqrt { 3 } ,$$ where \(k\) is an integer to be found.
AQA C3 2013 January Q2
9 marks Moderate -0.3
2
  1. Use Simpson's rule, with five ordinates (four strips), to calculate an estimate for $$\int _ { 0 } ^ { 4 } \frac { x } { x ^ { 2 } + 2 } \mathrm {~d} x$$ Give your answer to four significant figures.
  2. Show that the exact value of \(\int _ { 0 } ^ { 4 } \frac { x } { x ^ { 2 } + 2 } \mathrm {~d} x\) is \(\ln k\), where \(k\) is an integer. (5 marks)
AQA C3 2010 June Q4
8 marks Standard +0.3
4
  1. Use Simpson's rule with 7 ordinates ( 6 strips) to find an approximation to \(\int _ { 0.5 } ^ { 2 } \frac { x } { 1 + x ^ { 3 } } \mathrm {~d} x\), giving your answer to three significant figures.
  2. Find the exact value of \(\int _ { 0 } ^ { 1 } \frac { x ^ { 2 } } { 1 + x ^ { 3 } } \mathrm {~d} x\).
OCR MEI Paper 1 2019 June Q1
3 marks Easy -1.2
1 In this question you must show detailed reasoning. Show that \(\int _ { 4 } ^ { 9 } ( 2 x + \sqrt { x } ) \mathrm { d } x = \frac { 233 } { 3 }\).