Volume of revolution

Find the volume generated when a region is rotated 2π radians about the x-axis using integration.

1 questions · Standard +0.3

Sort by: Default | Easiest first | Hardest first
Edexcel C4 2013 January Q6
9 marks Standard +0.3
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a98d4a7f-1e6d-4294-9b5c-c945e8fbe83e-09_862_1534_219_205} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of part of the curve with equation \(y = 1 - 2 \cos x\), where \(x\) is measured in radians. The curve crosses the \(x\)-axis at the point \(A\) and at the point \(B\).
  1. Find, in terms of \(\pi\), the \(x\) coordinate of the point \(A\) and the \(x\) coordinate of the point \(B\). The finite region \(S\) enclosed by the curve and the \(x\)-axis is shown shaded in Figure 3. The region \(S\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
  2. Find, by integration, the exact value of the volume of the solid generated.