Find curve from gradient

Given dy/dx and a point on the curve, find the equation y = f(x) by integration.

19 questions · Moderate -0.8

Sort by: Default | Easiest first | Hardest first
Edexcel C1 2006 January Q8
7 marks Moderate -0.5
  1. The curve with equation \(y = \mathrm { f } ( x )\) passes through the point \(( 1,6 )\). Given that
$$f ^ { \prime } ( x ) = 3 + \frac { 5 x ^ { 2 } + 2 } { x ^ { \frac { 1 } { 2 } } } , x > 0$$ find \(\mathrm { f } ( x )\) and simplify your answer.
Edexcel C1 2011 January Q7
5 marks Moderate -0.8
7. The curve with equation \(y = \mathrm { f } ( x )\) passes through the point \(( - 1,0 )\). Given that $$\mathrm { f } ^ { \prime } ( x ) = 12 x ^ { 2 } - 8 x + 1$$ find \(\mathrm { f } ( x )\).
Edexcel C1 2014 January Q9
12 marks Moderate -0.8
9. A curve with equation \(y = \mathrm { f } ( x )\) passes through the point ( 3,6 ). Given that $$f ^ { \prime } ( x ) = ( x - 2 ) ( 3 x + 4 )$$
  1. use integration to find \(\mathrm { f } ( x )\). Give your answer as a polynomial in its simplest form.
  2. Show that \(\mathrm { f } ( x ) \equiv ( x - 2 ) ^ { 2 } ( x + p )\), where \(p\) is a positive constant. State the value of \(p\).
  3. Sketch the graph of \(y = \mathrm { f } ( x )\), showing the coordinates of any points where the curve touches or crosses the coordinate axes.
Edexcel C1 2009 January Q4
5 marks Moderate -0.8
A curve has equation \(y = \mathrm { f } ( x )\) and passes through the point (4, 22). Given that $$\mathrm { f } ^ { \prime } ( x ) = 3 x ^ { 2 } - 3 x ^ { \frac { 1 } { 2 } } - 7 ,$$ use integration to find \(\mathrm { f } ( x )\), giving each term in its simplest form.
OCR C2 2005 January Q6
9 marks Moderate -0.8
6
  1. Find \(\int x \left( x ^ { 2 } + 2 \right) \mathrm { d } x\).
    1. Find \(\int \frac { 1 } { \sqrt { x } } \mathrm {~d} x\).
    2. The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sqrt { } x }\). Find the equation of the curve, given that it passes through the point \(( 4,0 )\).
OCR C2 2007 January Q3
5 marks Moderate -0.8
3
  1. Find \(\int ( 4 x - 5 ) \mathrm { d } x\).
  2. The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 4 x - 5\). The curve passes through the point (3,7). Find the equation of the curve.
OCR C2 2006 June Q3
6 marks Moderate -0.8
3 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 x ^ { - \frac { 1 } { 2 } }\), and the curve passes through the point (4,5). Find the equation of the curve.
OCR MEI C2 2007 January Q9
4 marks Easy -1.2
9 A curve has gradient given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 6 x ^ { 2 } + 8 x\). The curve passes through the point \(( 1,5 )\). Find the equation of the curve.
OCR MEI C2 2009 June Q8
5 marks Moderate -0.8
8 The gradient of a curve is \(3 \sqrt { x } - 5\). The curve passes through the point ( 4,6 ). Find the equation of the curve.
OCR MEI C2 Q5
4 marks Easy -1.2
5 The gradient of a curve is given by the function \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 - x\).
The curve passes through the point \(( 1,2 )\).
Find the equation of the curve.
OCR C2 Q3
7 marks Moderate -0.8
3. Given that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 \sqrt { x } - x ^ { 2 }$$ and that \(y = \frac { 2 } { 3 }\) when \(x = 1\), find the value of \(y\) when \(x = 4\).
OCR C2 Q6
9 marks Moderate -0.8
6. (i) Evaluate $$\int _ { 2 } ^ { 4 } \left( 2 - \frac { 1 } { x ^ { 2 } } \right) \mathrm { d } x$$ (ii) Given that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 x ^ { 3 } + 1$$ and that \(y = 3\) when \(x = 0\), find the value of \(y\) when \(x = 2\).
OCR MEI C2 Q8
5 marks Moderate -0.8
8 The gradient of a curve is \(6 x ^ { 2 } + 12 x ^ { \frac { 1 } { 2 } }\). The curve passes through the point \(( 4,10 )\). Find the equation of the curve.
OCR MEI C2 Q11
4 marks Moderate -0.8
11 A curve has gradient given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 6 x ^ { 2 } + 8 x\). The curve passes through the point \(( 1,5 )\). Find the equation of the curve.
OCR MEI C2 Q9
4 marks Moderate -0.8
9 A curve has gradient given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 6 \sqrt { x }\). Find the equation of the curve, given that it passes through the point \(( 9,105 )\).
OCR C2 2010 January Q2
7 marks Moderate -0.8
2 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 6 x - 4\). The curve passes through the distinct points ( 2,5 ) and ( \(p , 5\) ).
  1. Find the equation of the curve.
  2. Find the value of \(p\).
OCR C2 2011 June Q2
6 marks Moderate -0.8
2
  1. Find \(\int \left( 6 x ^ { \frac { 1 } { 2 } } - 1 \right) \mathrm { d } x\).
  2. Hence find the equation of the curve for which \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 6 x ^ { \frac { 1 } { 2 } } - 1\) and which passes through the point \(( 4,17 )\).
OCR C2 2012 June Q2
6 marks Moderate -0.8
2
  1. Find \(\int \left( x ^ { 2 } - 2 x + 5 \right) \mathrm { d } x\).
  2. Hence find the equation of the curve for which \(\frac { \mathrm { d } y } { \mathrm {~d} x } = x ^ { 2 } - 2 x + 5\) and which passes through the point \(( 3,11 )\).
OCR MEI C2 2011 June Q6
5 marks Moderate -0.8
6 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 6 \sqrt { x } - 2\). Given also that the curve passes through the point \(( 9,4 )\), find the equation of the curve.