Combine logs into single logarithm

Express a sum, difference, or multiple of logarithms as a single logarithm (e.g., log_a(2) + log_a(3) = log_a(6), or 2log_a(6) - log_a(3) as single log).

6 questions · Easy -1.3

Sort by: Default | Easiest first | Hardest first
Edexcel C2 2006 June Q3
4 marks Easy -1.2
  1. Write down the value of \(\log _ { 6 } 36\).
  2. Express \(2 \log _ { a } 3 + \log _ { a } 11\) as a single logarithm to base \(a\).
OCR C2 2008 January Q3
4 marks Easy -1.8
3 Express each of the following as a single logarithm:
  1. \(\log _ { a } 2 + \log _ { a } 3\),
  2. \(2 \log _ { 10 } x - 3 \log _ { 10 } y\).
OCR MEI C2 Q3
4 marks Moderate -0.8
3
  1. Write \(\log _ { 10 } ( x + 4 ) - 2 \log _ { 10 } x + \log _ { 10 } ( x + 16 )\) as a single logarithm.
  2. Without using your calculator, verify that \(x = 4\) is a root of the equation $$\log _ { 10 } ( x + 4 ) - 2 \log _ { 10 } x + \log _ { 10 } ( x + 16 ) = 1$$
AQA C2 2009 January Q6
9 marks Moderate -0.8
6
  1. Write each of the following in the form \(\log _ { a } k\), where \(k\) is an integer:
    1. \(\log _ { a } 4 + \log _ { a } 10\);
    2. \(\log _ { a } 16 - \log _ { a } 2\);
    3. \(3 \log _ { a } 5\).
  2. Use logarithms to solve the equation \(( 1.5 ) ^ { 3 x } = 7.5\), giving your value of \(x\) to three decimal places.
  3. Given that \(\log _ { 2 } p = m\) and \(\log _ { 8 } q = n\), express \(p q\) in the form \(2 ^ { y }\), where \(y\) is an expression in \(m\) and \(n\).
AQA AS Paper 1 2022 June Q1
1 marks Easy -1.8
1 Express as a single logarithm $$\log _ { 10 } 2 - \log _ { 10 } x$$ Circle your answer.
[0pt] [1 mark] \(\log _ { 10 } ( 2 + x ) \quad \log _ { 10 } ( 2 - x ) \quad \log _ { 10 } ( 2 x ) \quad \log _ { 10 } \left( \frac { 2 } { x } \right)\)
AQA AS Paper 2 2018 June Q3
2 marks Easy -1.2
3 Express as a single logarithm $$2 \log _ { a } 6 - \log _ { a } 3$$