Find amplitude from speed conditions

A question is this type if and only if it gives speeds at two different positions and requires finding the amplitude of SHM.

4 questions · Standard +0.7

Sort by: Default | Easiest first | Hardest first
CAIE FP2 2018 November Q1
3 marks Standard +0.8
1 The point \(O\) is on the fixed horizontal line \(l\). Points \(A\) and \(B\) on \(l\) are such that \(O A = 0.1 \mathrm {~m}\) and \(O B = 0.5 \mathrm {~m}\), with \(A\) between \(O\) and \(B\). A particle \(P\) oscillates on \(l\) in simple harmonic motion with centre \(O\). The kinetic energy of \(P\) when it is at \(A\) is twice its kinetic energy when it is at \(B\). Find the amplitude of the motion.
Edexcel M3 Q4
9 marks Standard +0.3
4. A particle moves with simple harmonic motion along a straight line. When the particle is 3 cm from its centre of motion it has a speed of \(8 \mathrm {~cm} \mathrm {~s} ^ { - 1 }\) and an acceleration of magnitude \(12 \mathrm {~cm} \mathrm {~s} ^ { - 2 }\).
  1. Show that the period of the motion is \(\pi\) seconds.
  2. Find the amplitude of the motion.
  3. Hence, find the greatest speed of the particle.
Edexcel M3 Q6
19 marks Standard +0.8
6. A particle \(P\) of mass 2.5 kg is moving with simple harmonic motion in a straight line between two points \(A\) and \(B\) on a smooth horizontal table. When \(P\) is 3 m from \(O\), the centre of the oscillations, its speed is \(6 \mathrm {~ms} ^ { - 1 }\). When \(P\) is 2.25 m from \(O\), its speed is \(8 \mathrm {~ms} ^ { - 1 }\).
  1. Show that \(A B = 7.5 \mathrm {~m}\).
  2. Find the period of the motion.
  3. Find the kinetic energy of \(P\) when it is 2.7 m from \(A\).
  4. Show that the time taken by \(P\) to travel directly from \(A\) to the midpoint of \(O B\) is \(\frac { \pi } { 4 }\) seconds.
Edexcel FM2 2024 June Q5
11 marks Standard +0.8
  1. A particle \(P\) moves in a straight line with simple harmonic motion about a fixed point \(O\). The magnitude of the greatest acceleration of \(P\) is \(18 \mathrm {~m} \mathrm {~s} ^ { - 2 }\)
When \(P\) is 0.3 m from \(O\), the speed of \(P\) is \(2.4 \mathrm {~ms} ^ { - 1 }\)
The amplitude of the motion is \(a\) metres.
  1. Show that \(a = 0.5\)
  2. Find the greatest speed of \(P\). During one oscillation, the speed of \(P\) is at least \(2 \mathrm {~ms} ^ { - 1 }\) for \(S\) seconds.
  3. Find the value of \(S\).