Find higher derivatives from equation

A question is this type if and only if it asks to find d³y/dx³ or d⁴y/dx⁴ by differentiating the given differential equation and expressing the result in terms of lower derivatives.

6 questions · Standard +0.3

Sort by: Default | Easiest first | Hardest first
Edexcel F2 2021 January Q5
9 marks Challenging +1.2
5. Given that $$\left( 2 - x ^ { 2 } \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 5 x \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } = 3 y$$
  1. show that $$\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } = \frac { 1 } { \left( 2 - x ^ { 2 } \right) } \left( 2 x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } \left( 1 - 5 \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) - 5 \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + 3 \frac { \mathrm {~d} y } { \mathrm {~d} x } \right)$$ Given also that \(y = 3\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 4 }\) at \(x = 0\)
  2. obtain a series solution for \(y\) in ascending powers of \(x\) with simplified coefficients, up to and including the term in \(x ^ { 3 }\)
Edexcel FP2 2011 June Q2
7 marks Standard +0.3
2. $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \mathrm { e } ^ { x } \left( 2 y \frac { \mathrm {~d} y } { \mathrm {~d} x } + y ^ { 2 } + 1 \right)$$
  1. Show that $$\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } = \mathrm { e } ^ { x } \left[ 2 y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + k y \frac { \mathrm {~d} y } { \mathrm {~d} x } + y ^ { 2 } + 1 \right]$$ where \(k\) is a constant to be found. Given that, at \(x = 0 , y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2\),
  2. find a series solution for \(y\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
OCR Further Additional Pure Specimen Q3
5 marks Standard +0.3
3 Given \(z = x \sin y + y \cos x\), show that \(\frac { \partial ^ { 2 } z } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } z } { \partial y ^ { 2 } } + z = 0\).
Edexcel FP1 Specimen Q4
9 marks Challenging +1.2
4. $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = 0$$
  1. Show that $$\frac { \mathrm { d } ^ { 5 } y } { \mathrm {~d} x ^ { 5 } } = a x \frac { \mathrm {~d} ^ { 4 } y } { \mathrm {~d} x ^ { 4 } } + b \frac { \mathrm {~d} ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }$$ where \(a\) and \(b\) are integers to be found.
  2. Hence find a series solution, in ascending powers of \(x\), as far as the term in \(x ^ { 5 }\), of the differential equation (I) where \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\) at \(x = 0\)
Edexcel FP2 Q10
12 marks Standard +0.8
10. $$y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + \left( \frac { \mathrm { d } y } { \mathrm {~d} x } \right) ^ { 2 } + y = 0$$
  1. Find an expression for \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\). Given that \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\) at \(x = 0\),
  2. find the series solution for \(y\), in ascending powers of \(x\), up to an including the term in \(x ^ { 3 }\).
  3. Comment on whether it would be sensible to use your series solution to give estimates for \(y\) at \(x = 0.2\) and at \(x = 50\).
    [0pt] [P6 June 2002 Qn 4]
AQA Further Paper 2 2023 June Q1
1 marks Easy -1.8
1 Given that \(y = \sin x + \sinh x\), find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + y\) Circle your answer. $$\begin{array} { l l l l } 2 \sin x & - 2 \sin x & 2 \sinh x & - 2 \sinh x \end{array}$$