Series solution from differential equation

A question is this type if and only if it asks to find a series solution (Maclaurin or Taylor) for y in ascending powers of x up to a specified term, given a differential equation and initial conditions.

7 questions · Challenging +1.0

Sort by: Default | Easiest first | Hardest first
Edexcel F2 2014 June Q5
12 marks Challenging +1.2
5. $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 0$$
  1. Show that $$\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } } = \left( a x ^ { 2 } + b \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }$$ where \(a\) and \(b\) are constants to be found. Given that \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3\) at \(x = 0\)
  2. find a series solution for \(y\) in ascending powers of \(x\) up to and including the term in \(x ^ { 4 }\)
  3. use your series to estimate the value of \(y\) at \(x = - 0.2\), giving your answer to four decimal places.
Edexcel F2 2021 June Q4
9 marks
4. Given that $$y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 4 \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + 3 y = 0$$
  1. show that $$\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } = \frac { 28 } { y ^ { 2 } } \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 3 } - \frac { 24 } { y } \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right)$$ Given also that \(y = 8\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\) at \(x = 0\)
  2. find a series solution for \(y\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\), simplifying the coefficients where possible.
Edexcel F2 2022 June Q5
8 marks Challenging +1.3
  1. Given that
$$y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } - 2 y = 0 \quad y > 0$$
  1. determine \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) in terms of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } , \frac { \mathrm {~d} y } { \mathrm {~d} x }\) and \(y\) Given that \(y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\) at \(x = 0\)
  2. determine a series solution for \(y\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\), giving each coefficient in its simplest form.
Edexcel FP2 2013 June Q1
7 marks Standard +0.3
1. $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + x \frac { \mathrm {~d} y } { \mathrm {~d} x } = 2 \cos x$$
  1. Find \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) in terms of \(x , \frac { \mathrm {~d} y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\). At \(x = 0 , y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3\)
  2. Find the value of \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) at \(x = 0\)
  3. Express \(y\) as a series in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
Edexcel FP2 2013 June Q3
5 marks Standard +0.8
3. $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 y - \sin x = 0$$ Given that \(y = \frac { 1 } { 2 }\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 8 }\) at \(x = 0\), find a series expansion for \(y\) in terms of \(x\), up to and including the term in \(x ^ { 3 }\).
Edexcel FP2 2014 June Q5
9 marks Challenging +1.2
5. $$y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + 2 y = 0$$
  1. Find an expression for \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) in terms of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } , \frac { \mathrm {~d} y } { \mathrm {~d} x }\) and \(y\). Given that \(y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0.5\) at \(x = 0\),
  2. find a series solution for \(y\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
    5. \(y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + 2 y = 0\)
  3. Find an expression for \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) in terms of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } , \frac { \mathrm {~d} y } { \mathrm {~d} x }\) and \(y\).
AQA FP3 2015 June Q5
11 marks Challenging +1.2
5
  1. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 6 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 9 y = 36 \sin 3 x$$
  2. It is given that \(y = \mathrm { f } ( x )\) is the solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 6 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 9 y = 36 \sin 3 x$$ such that \(\mathrm { f } ( 0 ) = 0\) and \(\mathrm { f } ^ { \prime } ( 0 ) = 0\).
    1. Show that \(f ^ { \prime \prime } ( 0 ) = 0\).
    2. Find the first two non-zero terms in the expansion, in ascending powers of \(x\), of \(\mathrm { f } ( x )\).
      [0pt] [3 marks]