Modelling with rate proportional to difference

Questions where the rate of change is proportional to the difference between the quantity and a fixed value (e.g., Newton's law of cooling, tank problems).

1 questions · Moderate -0.8

Sort by: Default | Easiest first | Hardest first
CAIE P3 2009 November Q9
9 marks Moderate -0.8
9 The temperature of a quantity of liquid at time \(t\) is \(\theta\). The liquid is cooling in an atmosphere whose temperature is constant and equal to \(A\). The rate of decrease of \(\theta\) is proportional to the temperature difference \(( \theta - A )\). Thus \(\theta\) and \(t\) satisfy the differential equation $$\frac { \mathrm { d } \theta } { \mathrm {~d} t } = - k ( \theta - A )$$ where \(k\) is a positive constant.
  1. Find, in any form, the solution of this differential equation, given that \(\theta = 4 A\) when \(t = 0\).
  2. Given also that \(\theta = 3 A\) when \(t = 1\), show that \(k = \ln \frac { 3 } { 2 }\).
  3. Find \(\theta\) in terms of \(A\) when \(t = 2\), expressing your answer in its simplest form.