Angle between line and plane

Questions requiring calculation of the acute angle between a line and a plane using the angle between the line's direction vector and the plane's normal.

9 questions · Standard +0.3

Sort by: Default | Easiest first | Hardest first
CAIE P3 2013 June Q10
11 marks Standard +0.8
10 The line \(l\) has equation \(\mathbf { r } = \mathbf { i } + \mathbf { j } + \mathbf { k } + \lambda ( a \mathbf { i } + 2 \mathbf { j } + \mathbf { k } )\), where \(a\) is a constant. The plane \(p\) has equation \(x + 2 y + 2 z = 6\). Find the value or values of \(a\) in each of the following cases.
  1. The line \(l\) is parallel to the plane \(p\).
  2. The line \(l\) intersects the line passing through the points with position vectors \(3 \mathbf { i } + 2 \mathbf { j } + \mathbf { k }\) and \(\mathbf { i } + \mathbf { j } - \mathbf { k }\).
  3. The acute angle between the line \(l\) and the plane \(p\) is \(\tan ^ { - 1 } 2\).
Edexcel F3 2023 January Q7
10 marks Standard +0.3
  1. The plane \(\Pi\) has equation
$$\mathbf { r } = \left( \begin{array} { l } 1 \\ 2 \\ 3 \end{array} \right) + \lambda \left( \begin{array} { r } 0 \\ 3 \\ - 2 \end{array} \right) + \mu \left( \begin{array} { l } 1 \\ 1 \\ 2 \end{array} \right)$$ where \(\lambda\) and \(\mu\) are scalar parameters.
  1. Determine a vector perpendicular to \(\Pi\) The line \(l\) meets \(\Pi\) at the point ( \(1,2,3\) ) and passes through the point ( \(1,0,1\) )
  2. Determine the size of the acute angle between \(\Pi\) and \(l\) Give your answer to the nearest degree.
  3. Determine the shortest distance between \(\Pi\) and the point \(( 6 , - 3 , - 6 )\)
Edexcel FP3 2011 June Q6
10 marks Standard +0.3
  1. The plane \(P\) has equation
$$\mathbf { r } = \left( \begin{array} { l } 3 \\ 1 \\ 2 \end{array} \right) + \lambda \left( \begin{array} { r } 0 \\ 2 \\ - 1 \end{array} \right) + \mu \left( \begin{array} { l } 3 \\ 2 \\ 2 \end{array} \right)$$
  1. Find a vector perpendicular to the plane \(P\). The line \(l\) passes through the point \(A ( 1,3,3 )\) and meets \(P\) at \(( 3,1,2 )\). The acute angle between the plane \(P\) and the line \(l\) is \(\alpha\).
  2. Find \(\alpha\) to the nearest degree.
  3. Find the perpendicular distance from \(A\) to the plane \(P\).
OCR FP3 2011 June Q1
6 marks Standard +0.3
1 A line \(l\) has equation \(\frac { x - 1 } { 5 } = \frac { y - 6 } { 6 } = \frac { z + 3 } { - 7 }\) and a plane \(p\) has equation \(x + 2 y - z = 40\).
  1. Find the acute angle between \(l\) and \(p\).
  2. Find the perpendicular distance from the point \(( 1,6 , - 3 )\) to \(p\).
OCR Further Pure Core 1 2022 June Q4
4 marks Moderate -0.5
4 Determine the acute angle between the line \(\mathbf { r } = \left( \begin{array} { c } - \sqrt { 3 } \\ 1 \\ 3 \end{array} \right) + \lambda \left( \begin{array} { c } 1 \\ 2 \sqrt { 3 } \\ - \sqrt { 3 } \end{array} \right)\) and the \(y\)-axis.
OCR Further Pure Core 2 Specimen Q6
8 marks Standard +0.8
6 The equation of a plane \(\Pi\) is \(x - 2 y - z = 30\).
  1. Find the acute angle between the line \(\mathbf { r } = \left( \begin{array} { c } 3 \\ 2 \\ - 5 \end{array} \right) + \lambda \left( \begin{array} { r } - 5 \\ 3 \\ 2 \end{array} \right)\) and \(\Pi\).
  2. Determine the geometrical relationship between the line \(\mathbf { r } = \left( \begin{array} { l } 1 \\ 4 \\ 2 \end{array} \right) + \mu \left( \begin{array} { r } 3 \\ - 1 \\ 5 \end{array} \right)\) and \(\Pi\).
OCR MEI Further Pure Core 2023 June Q2
5 marks Moderate -0.3
2 In this question you must show detailed reasoning.
Find the angle between the vector \(3 i + 2 j + \mathbf { k }\) and the plane \(- x + 3 y + 2 z = 8\).
OCR Further Pure Core 2 2017 Specimen Q6
8 marks Standard +0.3
6 The equation of a plane \(\Pi\) is \(x - 2 y - z = 30\).
  1. Find the acute angle between the line \(\mathbf { r } = \left( \begin{array} { c } 3 \\ 2 \\ - 5 \end{array} \right) + \lambda \left( \begin{array} { r } - 5 \\ 3 \\ 2 \end{array} \right)\) and \(\Pi\).
  2. Determine the geometrical relationship between the line \(\mathbf { r } = \left( \begin{array} { l } 1 \\ 4 \\ 2 \end{array} \right) + \mu \left( \begin{array} { r } 3 \\ - 1 \\ 5 \end{array} \right)\) and \(\Pi\).
AQA Further Paper 1 2019 June Q5
3 marks Standard +0.3
5 A plane has equation r. \(\left[ \begin{array} { l } 1 \\ 1 \\ 1 \end{array} \right] = 7\)
A line has equation \(\mathbf { r } = \left[ \begin{array} { l } 2 \\ 0 \\ 1 \end{array} \right] + \mu \left[ \begin{array} { l } 1 \\ 0 \\ 1 \end{array} \right]\)
Calculate the acute angle between the line and the plane.
Give your answer to the nearest \(0.1 ^ { \circ }\)
\includegraphics[max width=\textwidth, alt={}, center]{68359582-cd8b-4807-9127-eaf8fd339746-05_2491_1716_219_153}