Vector operations and magnitudes

Questions asking to find unit vectors, magnitudes of vectors, or perform basic vector arithmetic (addition, subtraction, scalar multiplication) with position vectors.

9 questions · Moderate -0.1

Sort by: Default | Easiest first | Hardest first
CAIE P1 2004 June Q9
10 marks Moderate -0.8
9 Relative to an origin \(O\), the position vectors of the points \(A , B , C\) and \(D\) are given by $$\overrightarrow { O A } = \left( \begin{array} { r } 1 \\ 3 \\ - 1 \end{array} \right) , \quad \overrightarrow { O B } = \left( \begin{array} { r } 3 \\ - 1 \\ 3 \end{array} \right) , \quad \overrightarrow { O C } = \left( \begin{array} { l } 4 \\ 2 \\ p \end{array} \right) \quad \text { and } \quad \overrightarrow { O D } = \left( \begin{array} { r } - 1 \\ 0 \\ q \end{array} \right) ,$$ where \(p\) and \(q\) are constants. Find
  1. the unit vector in the direction of \(\overrightarrow { A B }\),
  2. the value of \(p\) for which angle \(A O C = 90 ^ { \circ }\),
  3. the values of \(q\) for which the length of \(\overrightarrow { A D }\) is 7 units.
CAIE P1 2009 June Q6
7 marks Moderate -0.3
6 Relative to an origin \(O\), the position vectors of the points \(A\) and \(B\) are given by $$\overrightarrow { O A } = 2 \mathbf { i } - 8 \mathbf { j } + 4 \mathbf { k } \quad \text { and } \quad \overrightarrow { O B } = 7 \mathbf { i } + 2 \mathbf { j } - \mathbf { k }$$
  1. Find the value of \(\overrightarrow { O A } \cdot \overrightarrow { O B }\) and hence state whether angle \(A O B\) is acute, obtuse or a right angle.
  2. The point \(X\) is such that \(\overrightarrow { A X } = \frac { 2 } { 5 } \overrightarrow { A B }\). Find the unit vector in the direction of \(O X\).
CAIE P1 2010 June Q10
11 marks Standard +0.3
10
\includegraphics[max width=\textwidth, alt={}, center]{56d4d40a-32f5-4f2d-938e-a24312cd42e7-4_552_629_842_758} The diagram shows the parallelogram \(O A B C\). Given that \(\overrightarrow { O A } = \mathbf { i } + 3 \mathbf { j } + 3 \mathbf { k }\) and \(\overrightarrow { O C } = 3 \mathbf { i } - \mathbf { j } + \mathbf { k }\), find
  1. the unit vector in the direction of \(\overrightarrow { O B }\),
  2. the acute angle between the diagonals of the parallelogram,
  3. the perimeter of the parallelogram, correct to 1 decimal place. \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE P1 2011 June Q8
8 marks Moderate -0.5
8 Relative to the origin \(O\), the position vectors of the points \(A , B\) and \(C\) are given by $$\overrightarrow { O A } = \left( \begin{array} { l } 2
3
5 \end{array} \right) , \quad \overrightarrow { O B } = \left( \begin{array} { l } 4
2
3 \end{array} \right) \quad \text { and } \quad \overrightarrow { O C } = \left( \begin{array} { r }
CAIE P1 2012 June Q2
5 marks Standard +0.3
2 Relative to an origin \(O\), the position vectors of the points \(A , B\) and \(C\) are given by $$\overrightarrow { O A } = \left( \begin{array} { r } 2
- 1
CAIE P1 2015 June Q5
7 marks Standard +0.3
5 Relative to an origin \(O\), the position vectors of the points \(A , B\) and \(C\) are given by $$\overrightarrow { O A } = \left( \begin{array} { r } 3
2
- 3 \end{array} \right) , \quad \overrightarrow { O B } = \left( \begin{array} { r } 5
- 1
- 2 \end{array} \right) \quad \text { and } \quad \overrightarrow { O C } = \left( \begin{array} { l }
CAIE P1 2016 June Q3
4 marks Moderate -0.8
3 Relative to an origin \(O\), the position vectors of points \(A\) and \(B\) are given by $$\overrightarrow { O A } = 2 \mathbf { i } - 5 \mathbf { j } - 2 \mathbf { k } \quad \text { and } \quad \overrightarrow { O B } = 4 \mathbf { i } - 4 \mathbf { j } + 2 \mathbf { k }$$ The point \(C\) is such that \(\overrightarrow { A B } = \overrightarrow { B C }\). Find the unit vector in the direction of \(\overrightarrow { O C }\).
CAIE P1 2019 November Q10
9 marks Standard +0.3
10 Relative to an origin \(O\), the position vectors of the points \(A , B\) and \(X\) are given by $$\overrightarrow { O A } = \left( \begin{array} { r } - 8
- 4
2 \end{array} \right) , \quad \overrightarrow { O B } = \left( \begin{array} { r } 10
2
Edexcel P4 2022 January Q6
6 marks Standard +0.3
6 \end{array} \right) \quad l _ { 2 } : \mathbf { r } = \left( \begin{array} { r }