| Question | Answer | Marks | AO | Guidance |
| 4 | (a) | | \(\operatorname { det } \mathbf { A } ( = 0.6 \times 1.8 - - 0.8 \times 2.4 ) = 3\) | B1 [1] | 1.1 | | |
| (b) | | Determinant of rotation \(= 1\) Determinant of rotation × determinant of stretch \(= 1 \times \mathrm { sf } = 3 \Rightarrow \mathrm { sf } = 3\) | | 1.1 2.2a | | |
| (c) | | Since the second column of A contains entries bigger than 1 (in magnitude) the stretch must be parallel to the \(y\)-axis. | | 2.4 | Or any correct, complete explanation. | \(\begin{gathered} \left( \begin{array} { c c } \cos \theta | - \sin \theta |
| \sin \theta | \cos \theta \end{array} \right) \left( \begin{array} { l l } 1 | 0 |
| 0 | 3 \end{array} \right) |
| = \left( \begin{array} { c c } \cos \theta | - 3 \sin \theta |
| \sin \theta | 3 \cos \theta \end{array} \right) \end{gathered}\) |
| (d) | | \(\sin \theta = - 0.8\) and \(\cos \theta = 0.6\) oe awrt \(- 53 ^ { \circ }\) (or - 0.93 rads) | | | Condone if only one equation or \(53 ^ { \circ }\) ( 0.93 rads) clockwise or \(307 ^ { \circ }\) (5.36 rads) (anticlockwise). | |
| 5 | (a) | | Min value of cosh is 1 (and point on ground is at the minimum) \(( \text { so } 0 = k \times 1 - 1 \Rightarrow ) k = 1\) | | | Using minimum point of curve and knowledge of cosh graph | | Could be derived by differentiation | | If zero scored then sc1 for \(\mathrm { k } = 1\) www |
|
| (b) | | \(\begin{aligned} | \text { Passes through } ( 0,3 ) = > 3 = \cosh ( - b ) - 1 |
| = > b = - \cosh ^ { - 1 } ( 3 + 1 ) |
| b = ( \pm ) \ln \left( 4 + \sqrt { } \left( 4 ^ { 2 } - 1 \right) \right) |
| = > b = \ln ( 4 + \sqrt { } 15 ) |
| \text { Passes through } ( 2,0 ) = > 0 = \cosh ( 2 a - b ) - 1 |
| \Rightarrow b = 2 a |
| = > a = 1 / 2 \ln ( 4 + \sqrt { } 15 ) \end{aligned}\) | | | | Use of ( 0,3 ) to derive an expression for \(b\) Correct numerical use of formula | | Use of \(( 2,0 )\) to derive \(b = 2 a\) |
| | \(\operatorname { accept } \cosh ( - b ) = \frac { 4 } { k }\) | | Or rearranges. | | Could be from (a). Allow ft |
|
| (c) | | (By symmetry of both;) (4,3) | | 2.2a | | |
| (d) | | | Holly's model; \(d _ { \mathrm { H } } = 6.75\) | | Jofra's model: \(d _ { \mathrm { J } } = \cosh ( 5 a - b ) - 1\) | | AG | | \(d _ { \mathrm { J } } - d _ { \mathrm { H } } = 10.067 \ldots - 6.75 = 3.32 ( 3 \mathrm { sf } )\) |
| | | | Use of \(x = 5\) with their values of \(a\) and \(b\) to predict \(d\). Must have - 1 | | From correct values |
| Condone 27/4 \(a = 1.0317 \ldots , b = 2.0634 \ldots , d _ { J } = 10.067 \ldots\) Condone 10.07 only if clear evidence of production |