Solve differential equations with hyperbolics

A question is this type if and only if it asks to solve a differential equation where the solution involves hyperbolic functions, often using integrating factors or substitution.

3 questions · Challenging +1.3

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 2 2023 June Q5
11 marks Challenging +1.2
5
  1. Starting from the definitions of cosh and sinh in terms of exponentials, prove that $$2 \cosh ^ { 2 } x = \cosh 2 x + 1$$ \includegraphics[max width=\textwidth, alt={}, center]{d421652f-576d-4843-abbf-54404e225fec-08_67_1550_374_347}
  2. Find the solution of the differential equation $$\frac { d y } { d x } + 2 y \tanh x = 1$$ for which \(y = 1\) when \(x = 0\). Give your answer in the form \(y = f ( x )\).
OCR Further Pure Core 1 2023 June Q6
4 marks Standard +0.8
6 In this question you must show detailed reasoning.} The power output, \(p\) watts, of a machine at time \(t\) hours after it is switched on can be modelled by the equation \(\mathrm { p } = 20 - 20 \tanh ( 1.44 \mathrm { t } )\) for \(t \geqslant 0\). Determine, according to the model, the mean power output of the machine over the first half hour after it is switched on. Give your answer correct to \(\mathbf { 2 }\) decimal places.
AQA FP2 2009 June Q7
12 marks Challenging +1.8
7 The diagram shows a curve which starts from the point \(A\) with coordinates ( 0,2 ). The curve is such that, at every point \(P\) on the curve, $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 2 } s$$ where \(s\) is the length of the \(\operatorname { arc } A P\).
\includegraphics[max width=\textwidth, alt={}, center]{587aac5c-fbc2-41d2-b1b3-16f3f7851d9d-4_399_764_1324_605}
    1. Show that $$\frac { \mathrm { d } s } { \mathrm {~d} x } = \frac { 1 } { 2 } \sqrt { 4 + s ^ { 2 } }$$ (3 marks)
    2. Hence show that $$s = 2 \sinh \frac { x } { 2 }$$
    3. Hence find the cartesian equation of the curve.
  1. Show that $$y ^ { 2 } = 4 + s ^ { 2 }$$