Reduction formulas with hyperbolic integrals

A question is this type if and only if it asks to prove or use a reduction formula for integrals of the form ∫ sech^n x tanh^m x dx or similar involving powers of hyperbolic functions.

3 questions · Challenging +1.6

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 2 2021 November Q8
13 marks Challenging +1.8
8
  1. Starting from the definitions of tanh and sech in terms of exponentials, prove that $$1 - \tanh ^ { 2 } x = \operatorname { sech } ^ { 2 } x$$
  2. Using the substitution \(\mathrm { u } = \tanh \mathrm { x }\), or otherwise, find \(\int \operatorname { sech } ^ { 2 } x \tanh ^ { 2 } x \mathrm {~d} x\).
    It is given that, for \(n \geqslant 0 , \mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { \ln 3 } \operatorname { sech } ^ { \mathrm { n } } x \tanh ^ { 2 } x \mathrm { dx }\).
  3. Show that, for \(n \geqslant 2\), $$( n + 1 ) I _ { n } = \left( \frac { 4 } { 5 } \right) ^ { 3 } \left( \frac { 3 } { 5 } \right) ^ { n - 2 } + ( n - 2 ) I _ { n - 2 }$$ [You may use the result that \(\frac { \mathrm { d } } { \mathrm { d } x } ( \operatorname { sech } x ) = - \tanh x \operatorname { sech } x\).]
  4. Find the value of \(I _ { 4 }\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
Edexcel F3 2024 January Q5
11 marks Challenging +1.3
  1. (a) Use the definitions of hyperbolic functions in terms of exponentials to prove that
$$\begin{gathered} 1 - \operatorname { sech } ^ { 2 } x \equiv \tanh ^ { 2 } x \\ I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 3 } \ln 2 } \tanh ^ { n } 3 x \mathrm {~d} x \quad n \in \mathbb { Z } \quad n \geqslant 0 \end{gathered}$$ (b) Show that $$I _ { n } = I _ { n - 2 } - \frac { p ^ { n - 1 } } { 3 ( n - 1 ) } \quad n \geqslant 2$$ where \(p\) is a rational number to be determined.
(c) Hence determine the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 3 } \ln 2 } \tanh ^ { 5 } 3 x \mathrm {~d} x$$ giving your answer in the form \(a \ln b + c\) where \(a , b\) and \(c\) are rational numbers to be found.
OCR FP2 2011 January Q8
12 marks Challenging +1.8
8
  1. Without using a calculator, show that \(\sinh \left( \cosh ^ { - 1 } 2 \right) = \sqrt { 3 }\).
  2. It is given that, for non-negative integers \(n\), $$I _ { n } = \int _ { 0 } ^ { \beta } \cosh ^ { n } x \mathrm {~d} x , \quad \text { where } \beta = \cosh ^ { - 1 } 2$$ Show that \(n I _ { n } = 2 ^ { n - 1 } \sqrt { 3 } + ( n - 1 ) I _ { n - 2 }\), for \(n \geqslant 2\).
  3. Evaluate \(I _ { 5 }\), giving your answer in the form \(k \sqrt { 3 }\).