Parametric point verification

A question is this type if and only if it asks to verify that a given parametric point lies on a conic or to find parameter values satisfying given conditions.

8 questions · Moderate -0.3

Sort by: Default | Easiest first | Hardest first
Edexcel FP1 2009 January Q3
4 marks Moderate -0.8
3. The rectangular hyperbola, \(H\), has parametric equations \(x = 5 t , y = \frac { 5 } { t } , t \neq 0\).
  1. Write the cartesian equation of \(H\) in the form \(x y = c ^ { 2 }\). Points \(A\) and \(B\) on the hyperbola have parameters \(t = 1\) and \(t = 5\) respectively.
  2. Find the coordinates of the mid-point of \(A B\).
Edexcel FP1 2010 June Q5
5 marks Moderate -0.8
5. The parabola \(C\) has equation \(y ^ { 2 } = 20 x\).
  1. Verify that the point \(P \left( 5 t ^ { 2 } , 10 t \right)\) is a general point on \(C\). The point \(A\) on \(C\) has parameter \(t = 4\).
    The line \(l\) passes through \(A\) and also passes through the focus of \(C\).
  2. Find the gradient of \(l\).
Edexcel FP1 2013 June Q5
8 marks Standard +0.3
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3f8492ef-c576-4642-b75f-1735387e11ba-06_828_1091_228_422} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a rectangular hyperbola \(H\) with parametric equations $$x = 3 t , \quad y = \frac { 3 } { t } , \quad t \neq 0$$ The line \(L\) with equation \(6 y = 4 x - 15\) intersects \(H\) at the point \(P\) and at the point \(Q\) as shown in Figure 1.
  1. Show that \(L\) intersects \(H\) where \(4 t ^ { 2 } - 5 t - 6 = 0\)
  2. Hence, or otherwise, find the coordinates of points \(P\) and \(Q\).
OCR MEI C4 Q7
3 marks Easy -1.2
7 Given that \(x = 2 \sec \theta\) and \(y = 3 \tan \theta\), show that \(\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 9 } = 1\).
Edexcel Paper 2 2019 June Q4
6 marks Standard +0.3
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{fa4afaf4-fe5d-4f3a-b3de-9600d5502a49-08_620_679_251_740} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} The curve \(C _ { 1 }\) with parametric equations $$x = 10 \cos t , \quad y = 4 \sqrt { 2 } \sin t , \quad 0 \leqslant t < 2 \pi$$ meets the circle \(C _ { 2 }\) with equation $$x ^ { 2 } + y ^ { 2 } = 66$$ at four distinct points as shown in Figure 2.
Given that one of these points, \(S\), lies in the 4th quadrant, find the Cartesian coordinates of \(S\).
Edexcel FP1 AS 2023 June Q6
8 marks Standard +0.3
  1. The parabola \(C\) has equation \(y ^ { 2 } = 4 a x\) where \(a\) is a positive constant.
The point \(P \left( a t ^ { 2 } , 2 a t \right) , t \neq 0\), lies on \(C\)
The normal to \(C\) at \(P\) is parallel to the line with equation \(y = 2 x\)
  1. For the point \(P\), show that \(t = - 2\) The normal to \(C\) at \(P\) intersects \(C\) again when \(x = 9\)
  2. Determine the value of \(a\), giving a reason for your answer.
OCR MEI C4 2008 June Q4
3 marks Moderate -0.8
4 Given that \(x = 2 \sec \theta\) and \(y = 3 \tan \theta\), show that \(\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 9 } = 1\).
AQA FP1 2005 June Q8
8 marks Standard +0.3
8 The diagram shows a part of the curve $$\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 6 } = 1$$ and a chord \(P Q\) of the curve, where \(P\) lies on the \(x\)-axis.
\includegraphics[max width=\textwidth, alt={}, center]{5bfb4d19-8772-43d7-b667-bd124d2504a8-05_751_1072_680_459}
  1. Write down the coordinates of \(P\).
  2. The gradient of the chord \(P Q\) is 2 . Find the coordinates of \(Q\).