Ellipse locus problems

A question is this type if and only if it asks to find the locus of a point defined by tangent/normal intersections or midpoints on an ellipse.

9 questions · Challenging +1.4

Sort by: Default | Easiest first | Hardest first
Edexcel F3 2023 January Q9
13 marks Challenging +1.2
  1. The ellipse \(E\) has equation
$$x ^ { 2 } + 9 y ^ { 2 } = 9$$ The foci of \(E\) are \(F _ { 1 }\) and \(F _ { 2 }\)
    1. Determine the coordinates of \(F _ { 1 }\) and the coordinates of \(F _ { 2 }\)
    2. Write down the equation of each of the directrices of \(E\) The point \(P\) lies on the ellipse.
  1. Show that \(\left| P F _ { 1 } \right| + \left| P F _ { 2 } \right| = 6\) The straight line through \(P\) with equation \(y = 2 x + c\) meets \(E\) again at the point \(Q\) The point \(M\) is the midpoint of \(P Q\)
  2. Show that as \(P\) varies the locus of \(M\) is a straight line passing through the origin.
Edexcel F3 2023 June Q6
13 marks Challenging +1.3
  1. The ellipse \(E\) has equation \(\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1\)
The point \(P ( 4 \cos \theta , 3 \sin \theta )\) lies on \(E\).
  1. Use calculus to show that an equation of the tangent to \(E\) at \(P\) is $$3 x \cos \theta + 4 y \sin \theta = 12$$
  2. Determine an equation for the normal to \(E\) at \(P\). The tangent to \(E\) at \(P\) meets the \(x\)-axis at the point \(A\).
    The normal to \(E\) at \(P\) meets the \(y\)-axis at the point \(B\).
  3. Show that the locus of the midpoint of \(A\) and \(B\) as \(\theta\) varies has equation $$x ^ { 2 } \left( p - q y ^ { 2 } \right) = r$$ where \(p , q\) and \(r\) are integers to be determined.
Edexcel F3 2021 October Q3
9 marks Challenging +1.8
3. The ellipse \(E\) has equation $$\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1$$ The line \(l\) is the normal to \(E\) at the point \(P ( 8 \cos \theta , 6 \sin \theta )\).
  1. Using calculus, show that an equation for \(l\) is $$4 x \sin \theta - 3 y \cos \theta = 14 \sin \theta \cos \theta$$ The line \(l\) meets the \(x\)-axis at the point \(A\) and meets the \(y\)-axis at the point \(B\).
    The point \(M\) is the midpoint of \(A B\).
  2. Determine a Cartesian equation for the locus of \(M\) as \(\theta\) varies, giving your answer in the form \(a x ^ { 2 } + b y ^ { 2 } = c\) where \(a , b\) and \(c\) are integers.
Edexcel FP3 2012 June Q6
11 marks Challenging +1.2
  1. The ellipse \(E\) has equation
$$\frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { b ^ { 2 } } = 1$$ The line \(l _ { 1 }\) is a tangent to \(E\) at the point \(P ( a \cos \theta , b \sin \theta )\).
  1. Using calculus, show that an equation for \(l _ { 1 }\) is $$\frac { x \cos \theta } { a } + \frac { y \sin \theta } { b } = 1$$ The circle \(C\) has equation $$x ^ { 2 } + y ^ { 2 } = a ^ { 2 }$$ The line \(l _ { 2 }\) is a tangent to \(C\) at the point \(Q ( a \cos \theta , a \sin \theta )\).
  2. Find an equation for the line \(l _ { 2 }\). Given that \(l _ { 1 }\) and \(l _ { 2 }\) meet at the point \(R\),
  3. find, in terms of \(a , b\) and \(\theta\), the coordinates of \(R\).
  4. Find the locus of \(R\), as \(\theta\) varies.
Edexcel FP3 2013 June Q3
8 marks Challenging +1.2
  1. The point \(P\) lies on the ellipse \(E\) with equation
$$\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1$$ \(N\) is the foot of the perpendicular from point \(P\) to the line \(x = 8\)
\(M\) is the midpoint of \(P N\).
  1. Sketch the graph of the ellipse \(E\), showing also the line \(x = 8\) and a possible position for the line \(P N\).
  2. Find an equation of the locus of \(M\) as \(P\) moves around the ellipse.
  3. Show that this locus is a circle and state its centre and radius.
Edexcel FP3 2015 June Q8
14 marks Challenging +1.2
  1. The ellipse \(E\) has equation \(x ^ { 2 } + 4 y ^ { 2 } = 4\)
    1. (i) Find the coordinates of the foci, \(F _ { 1 }\) and \(F _ { 2 }\), of \(E\).
      (ii) Write down the equations of the directrices of \(E\).
    2. Given that the point \(P\) lies on the ellipse, show that
    $$\left| P F _ { 1 } \right| + \left| P F _ { 2 } \right| = 4$$ A chord of an ellipse is a line segment joining two points on the ellipse.
    The set of midpoints of the parallel chords of \(E\) with gradient \(m\), where \(m\) is a constant, lie on a straight line \(l\).
  2. Find an equation of \(l\).
Edexcel FP1 AS 2020 June Q4
7 marks Standard +0.8
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1e5324f5-a9bc-4041-bfbb-cb940417ea63-12_611_608_274_715} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the parabola \(C\) with equation \(y ^ { 2 } = 4 a x\), where \(a\) is a positive constant. The point \(S\) is the focus of \(C\) and the point \(P \left( a p ^ { 2 } \right.\), 2ap) lies on \(C\) where \(p > 0\)
  1. Write down the coordinates of \(S\).
  2. Write down the length of SP in terms of \(a\) and \(p\). The point \(Q \left( a q ^ { 2 } , 2 a q \right)\), where \(p \neq q\), also lies on \(C\).
    The point \(M\) is the midpoint of \(P Q\).
    Given that \(p q = - 1\)
  3. prove that, as \(P\) varies, the locus of \(M\) has equation $$y ^ { 2 } = 2 a ( x - a )$$
Edexcel FP1 2020 June Q7
14 marks Challenging +1.8
  1. The points \(P \left( 9 p ^ { 2 } , 18 p \right)\) and \(Q \left( 9 q ^ { 2 } , 18 q \right) , p \neq q\), lie on the parabola \(C\) with equation
$$y ^ { 2 } = 36 x$$ The line \(l\) passes through the points \(P\) and \(Q\)
  1. Show that an equation for the line \(l\) is $$( p + q ) y = 2 ( x + 9 p q )$$ The normal to \(C\) at \(P\) and the normal to \(C\) at \(Q\) meet at the point \(A\).
  2. Show that the coordinates of \(A\) are $$\left( 9 \left( p ^ { 2 } + q ^ { 2 } + p q + 2 \right) , - 9 p q ( p + q ) \right)$$ Given that the points \(P\) and \(Q\) vary such that \(l\) always passes through the point \(( 12,0 )\)
  3. find, in the form \(y ^ { 2 } = \mathrm { f } ( x )\), an equation for the locus of \(A\), giving \(\mathrm { f } ( x )\) in simplest form.
Edexcel FP1 Specimen Q7
8 marks Challenging +1.8
  1. \(P\) and \(Q\) are two distinct points on the ellipse described by the equation \(x ^ { 2 } + 4 y ^ { 2 } = 4\)
The line \(l\) passes through the point \(P\) and the point \(Q\).
The tangent to the ellipse at \(P\) and the tangent to the ellipse at \(Q\) intersect at the point \(( r , s )\).
Show that an equation of the line \(l\) is $$4 s y + r x = 4$$