Polar curves with trigonometric identities

Questions requiring use of specific trigonometric identities (like sin 2θ in terms of tan θ, or multiple angle formulas) to simplify integrals or convert equations.

1 questions · Challenging +1.2

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 1 2022 June Q6
13 marks Challenging +1.2
6 The curve \(C\) has Cartesian equation \(x ^ { 2 } + x y + y ^ { 2 } = a\), where \(a\) is a positive constant.
  1. Show that the polar equation of \(C\) is \(r ^ { 2 } = \frac { 2 a } { 2 + \sin 2 \theta }\).
  2. Sketch the part of \(C\) for \(0 \leqslant \theta \leqslant \frac { 1 } { 4 } \pi\). The region \(R\) is enclosed by this part of \(C\), the initial line and the half-line \(\theta = \frac { 1 } { 4 } \pi\).
  3. It is given that \(\sin 2 \theta\) may be expressed as \(\frac { 2 \tan \theta } { 1 + \tan ^ { 2 } \theta }\). Use this result to show that the area of \(R\) is $$\frac { 1 } { 2 } a \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \frac { 1 + \tan ^ { 2 } \theta } { 1 + \tan \theta + \tan ^ { 2 } \theta } \mathrm {~d} \theta$$ and use the substitution \(t = \tan \theta\) to find the exact value of this area.