Complex roots with real coefficients

A question is this type if and only if it gives one complex root of a polynomial with real coefficients and asks to find other roots and/or unknown real coefficients.

58 questions · Standard +0.2

Sort by: Default | Easiest first | Hardest first
CAIE P3 2012 November Q9
10 marks Standard +0.3
9 The complex number \(1 + ( \sqrt { } 2 ) \mathrm { i }\) is denoted by \(u\). The polynomial \(x ^ { 4 } + x ^ { 2 } + 2 x + 6\) is denoted by \(\mathrm { p } ( x )\).
  1. Showing your working, verify that \(u\) is a root of the equation \(\mathrm { p } ( x ) = 0\), and write down a second complex root of the equation.
  2. Find the other two roots of the equation \(\mathrm { p } ( x ) = 0\).
CAIE P3 2022 June Q10
11 marks Standard +0.8
10 The complex number \(- 1 + \sqrt { 7 } \mathrm { i }\) is denoted by \(u\). It is given that \(u\) is a root of the equation $$2 x ^ { 3 } + 3 x ^ { 2 } + 14 x + k = 0$$ where \(k\) is a real constant.
  1. Find the value of \(k\).
  2. Find the other two roots of the equation.
  3. On an Argand diagram, sketch the locus of points representing complex numbers \(z\) satisfying the equation \(| z - u | = 2\).
  4. Determine the greatest value of \(\arg z\) for points on this locus, giving your answer in radians.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P3 2020 November Q7
7 marks Moderate -0.3
7
  1. Verify that \(- 1 + \sqrt { 5 } \mathrm { i }\) is a root of the equation \(2 x ^ { 3 } + x ^ { 2 } + 6 x - 18 = 0\).
  2. Find the other roots of this equation.
CAIE P3 2021 November Q10
12 marks Standard +0.8
10 The complex number \(1 + 2 \mathrm { i }\) is denoted by \(u\). The polynomial \(2 x ^ { 3 } + a x ^ { 2 } + 4 x + b\), where \(a\) and \(b\) are real constants, is denoted by \(\mathrm { p } ( x )\). It is given that \(u\) is a root of the equation \(\mathrm { p } ( x ) = 0\).
  1. Find the values of \(a\) and \(b\).
  2. State a second complex root of this equation.
  3. Find the real factors of \(\mathrm { p } ( x )\).
    1. On a sketch of an Argand diagram, shade the region whose points represent complex numbers \(z\) satisfying the inequalities \(| z - u | \leqslant \sqrt { 5 }\) and \(\arg z \leqslant \frac { 1 } { 4 } \pi\).
    2. Find the least value of \(\operatorname { Im } z\) for points in the shaded region. Give your answer in an exact form.
      If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
Edexcel F1 2015 January Q1
7 marks Standard +0.3
1. $$f ( x ) = x ^ { 4 } - x ^ { 3 } - 9 x ^ { 2 } + 29 x - 60$$ Given that \(x = 1 + 2 \mathrm { i }\) is a root of the equation \(\mathrm { f } ( x ) = 0\), use algebra to find the three other roots of the equation \(\mathrm { f } ( x ) = 0\)
Edexcel F1 2016 January Q7
9 marks Standard +0.3
7. $$f ( x ) = x ^ { 4 } - 3 x ^ { 3 } - 15 x ^ { 2 } + 99 x - 130$$
  1. Given that \(x = 3 + 2 \mathrm { i }\) is a root of the equation \(\mathrm { f } ( x ) = 0\), use algebra to find the three other roots of the equation \(\mathrm { f } ( x ) = 0\)
  2. Show the four roots of \(\mathrm { f } ( x ) = 0\) on a single Argand diagram.
Edexcel F1 2017 January Q3
7 marks Standard +0.8
3. $$f ( x ) = x ^ { 4 } + 2 x ^ { 3 } + 26 x ^ { 2 } + 32 x + 160$$ Given that \(x = - 1 + 3 \mathrm { i }\) is a root of the equation \(\mathrm { f } ( x ) = 0\), use algebra to find the three other roots of \(\mathrm { f } ( x ) = 0\)
(Solutions based entirely on graphical or numerical methods are not acceptable.)
Edexcel F1 2018 January Q2
9 marks Standard +0.3
2. $$f ( z ) = z ^ { 4 } - 6 z ^ { 3 } + 38 z ^ { 2 } - 94 z + 221$$
  1. Given that \(z = 2 + 3 i\) is a root of the equation \(f ( z ) = 0\), use algebra to find the three other roots of \(f ( z ) = 0\)
  2. Show the four roots of \(\mathrm { f } ( \mathrm { z } ) = 0\) on a single Argand diagram.
Edexcel F1 2021 January Q2
5 marks Standard +0.3
  1. Given that \(x = \frac { 3 } { 8 } + \frac { \sqrt { 71 } } { 8 } \mathrm { i }\) is a root of the equation
$$4 x ^ { 3 } - 19 x ^ { 2 } + p x + q = 0$$
  1. write down the other complex root of the equation. Given that \(x = 4\) is also a root of the equation,
  2. find the value of \(p\) and the value of \(q\).
Edexcel F1 2022 January Q4
8 marks Standard +0.3
4. The equation $$x ^ { 4 } + A x ^ { 3 } + B x ^ { 2 } + C x + 225 = 0$$ where \(A , B\) and \(C\) are real constants, has
  • a complex root \(4 + 3 \mathrm { i }\)
  • a repeated positive real root
    1. Write down the other complex root of this equation.
    2. Hence determine a quadratic factor of \(x ^ { 4 } + A x ^ { 3 } + B x ^ { 2 } + C x + 225\)
    3. Deduce the real root of the equation.
    4. Hence determine the value of each of the constants \(A , B\) and \(C\)
Edexcel F1 2024 January Q2
9 marks Standard +0.8
2. $$f ( z ) = 2 z ^ { 3 } + p z ^ { 2 } + q z - 41$$ where \(p\) and \(q\) are integers.
The complex number \(5 - 4 \mathrm { i }\) is a root of the equation \(\mathrm { f } ( \mathrm { z } ) = 0\)
  1. Write down another complex root of this equation.
  2. Solve the equation \(\mathrm { f } ( \mathrm { z } ) = 0\) completely.
  3. Determine the value of \(p\) and the value of \(q\). When plotted on an Argand diagram, the points representing the roots of the equation \(\mathrm { f } ( \mathrm { z } ) = 0\) form the vertices of a triangle.
  4. Determine the area of this triangle.
Edexcel F1 2014 June Q2
4 marks Moderate -0.8
2. Given that \(- 2 + 3 \mathrm { i }\) is a root of the equation $$z ^ { 2 } + p z + q = 0$$ where \(p\) and \(q\) are real constants,
  1. write down the other root of the equation.
  2. Find the value of \(p\) and the value of \(q\).
Edexcel F1 2016 June Q8
9 marks Standard +0.3
8. $$f ( z ) = z ^ { 4 } + 6 z ^ { 3 } + 76 z ^ { 2 } + a z + b$$ where \(a\) and \(b\) are real constants. Given that \(- 3 + 8 \mathrm { i }\) is a complex root of the equation \(\mathrm { f } ( \mathrm { z } ) = 0\)
  1. write down another complex root of this equation.
  2. Hence, or otherwise, find the other roots of the equation \(\mathrm { f } ( \mathrm { z } ) = 0\)
  3. Show on a single Argand diagram all four roots of the equation \(f ( z ) = 0\)
Edexcel F1 2017 June Q7
8 marks Moderate -0.3
7. $$f ( z ) = z ^ { 4 } + 4 z ^ { 3 } + 6 z ^ { 2 } + 4 z + a$$ where \(a\) is a real constant. Given that \(1 + 2 \mathrm { i }\) is a complex root of the equation \(\mathrm { f } ( \mathrm { z } ) = 0\)
  1. write down another complex root of this equation.
    1. Hence, find the other roots of the equation \(\mathrm { f } ( \mathrm { z } ) = 0\)
    2. State the value of \(a\). \includegraphics[max width=\textwidth, alt={}, center]{cfeb435a-03c2-4bcd-9c9f-6f62b4556cb3-15_31_33_205_2014}
      " "
      \includegraphics[max width=\textwidth, alt={}, center]{cfeb435a-03c2-4bcd-9c9f-6f62b4556cb3-15_42_53_317_1768}
Edexcel F1 2020 June Q3
9 marks Standard +0.3
3. $$f ( z ) = z ^ { 4 } + a z ^ { 3 } + b z ^ { 2 } + c z + d$$ where \(a , b , c\) and \(d\) are integers.
The complex numbers \(3 + \mathrm { i }\) and \(- 1 - 2 \mathrm { i }\) are roots of the equation \(\mathrm { f } ( \mathrm { z } ) = 0\)
  1. Write down the other roots of this equation.
  2. Show all the roots of the equation \(\mathrm { f } ( \mathrm { z } ) = 0\) on a single Argand diagram.
  3. Determine the values of \(a , b , c\) and \(d\).
    VILU SIHI NI JIIIM ION OCVIUV SIHI NI III M M I ON OOVIAV SIHI NI JIIIM I ION OC
Edexcel F1 2022 June Q4
8 marks Standard +0.3
4. $$f ( z ) = 2 z ^ { 4 } - 19 z ^ { 3 } + A z ^ { 2 } + B z - 156$$ where \(A\) and \(B\) are constants.
The complex number \(5 - \mathrm { i }\) is a root of the equation \(\mathrm { f } ( \mathrm { z } ) = 0\)
  1. Write down another complex root of this equation.
  2. Solve the equation \(\mathrm { f } ( \mathrm { z } ) = 0\) completely.
  3. Determine the value of \(A\) and the value of \(B\).
Edexcel F1 2021 October Q4
7 marks Moderate -0.3
4. $$f ( z ) = 2 z ^ { 3 } - z ^ { 2 } + a z + b$$ where \(a\) and \(b\) are integers. The complex number \(- 1 - 3 \mathrm { i }\) is a root of the equation \(\mathrm { f } ( \mathrm { z } ) = 0\)
  1. Write down another complex root of this equation.
  2. Determine the value of \(a\) and the value of \(b\).
  3. Show all the roots of the equation \(\mathrm { f } ( \mathrm { z } ) = 0\) on a single Argand diagram.
    VIIN SIHILNI III IM ION OCVIAV SIHI NI III HM ION OOVIAV SIHI NI III IM I ON OC
Edexcel FP1 2010 January Q6
8 marks Moderate -0.3
6. Given that 2 and \(5 + 2 \mathrm { i }\) are roots of the equation $$x ^ { 3 } - 12 x ^ { 2 } + c x + d = 0 , \quad c , d \in \mathbb { R }$$
  1. write down the other complex root of the equation.
  2. Find the value of \(c\) and the value of \(d\).
  3. Show the three roots of this equation on a single Argand diagram.
Edexcel FP1 2011 January Q4
4 marks Moderate -0.8
4. Given that \(2 - 4 \mathrm { i }\) is a root of the equation $$z ^ { 2 } + p z + q = 0 ,$$ where \(p\) and \(q\) are real constants,
  1. write down the other root of the equation,
  2. find the value of \(p\) and the value of \(q\).
Edexcel FP1 2013 June Q2
5 marks Standard +0.3
2. $$f ( z ) = z ^ { 3 } + 5 z ^ { 2 } + 11 z + 15$$ Given that \(z = 2 i - 1\) is a solution of the equation \(f ( z ) = 0\), use algebra to solve \(f ( z ) = 0\) completely.
(5)
Edexcel FP1 2014 June Q1
5 marks Moderate -0.3
  1. The roots of the equation
$$2 z ^ { 3 } - 3 z ^ { 2 } + 8 z + 5 = 0$$ are \(z _ { 1 } , z _ { 2 }\) and \(z _ { 3 }\)
Given that \(z _ { 1 } = 1 + 2 i\), find \(z _ { 2 }\) and \(z _ { 3 }\)
Edexcel FP1 2014 June Q3
8 marks Moderate -0.3
3. Given that 2 and \(1 - 5 \mathrm { i }\) are roots of the equation $$x ^ { 3 } + p x ^ { 2 } + 30 x + q = 0 , \quad p , q \in \mathbb { R }$$
  1. write down the third root of the equation.
  2. Find the value of \(p\) and the value of \(q\).
  3. Show the three roots of this equation on a single Argand diagram.
Edexcel FP1 2017 June Q6
6 marks Moderate -0.3
6. Given that 4 and \(2 \mathrm { i } - 3\) are roots of the equation $$x ^ { 3 } + a x ^ { 2 } + b x - 52 = 0$$ where \(a\) and \(b\) are real constants,
  1. write down the third root of the equation,
  2. find the value of \(a\) and the value of \(b\).
Edexcel FP1 Specimen Q8
9 marks Moderate -0.3
8. $$\mathrm { f } ( x ) \equiv 2 x ^ { 3 } - 5 x ^ { 2 } + p x - 5 , p \in \mathbb { R }$$ Given that \(1 - 2 \mathrm { i }\) is a complex solution of \(\mathrm { f } ( x ) = 0\),
  1. write down the other complex solution of \(\mathrm { f } ( x ) = 0\),
  2. solve the equation \(\mathrm { f } ( x ) = 0\),
  3. find the value of \(p\).
OCR FP1 2008 June Q6
7 marks Moderate -0.5
6 The cubic equation \(x ^ { 3 } + a x ^ { 2 } + b x + c = 0\), where \(a , b\) and \(c\) are real, has roots ( \(3 + \mathrm { i }\) ) and 2 .
  1. Write down the other root of the equation.
  2. Find the values of \(a , b\) and \(c\).