Tangent/normal with axis intercepts

A question is this type if and only if it asks to find where a tangent or normal line crosses the x-axis or y-axis, or to find areas involving these intercepts.

5 questions · Standard +0.5

Sort by: Default | Easiest first | Hardest first
Edexcel C34 2018 June Q10
7 marks Standard +0.8
10. The curve \(C\) satisfies the equation $$x \mathrm { e } ^ { 5 - 2 y } - y = 0 \quad x > 0 , \quad y > 0$$ The point \(P\) with coordinates ( \(2 \mathrm { e } ^ { - 1 } , 2\) ) lies on \(C\).
The tangent to \(C\) at \(P\) cuts the \(x\)-axis at the point \(A\) and cuts the \(y\)-axis at the point \(B\).
Given that \(O\) is the origin, find the exact area of triangle \(O A B\), giving your answer in its simplest form. \includegraphics[max width=\textwidth, alt={}]{a377da06-a968-438c-bec2-ae55283dae47-35_4_21_127_2042} L
Edexcel C4 2016 June Q3
9 marks Standard +0.3
  1. The curve \(C\) has equation
$$2 x ^ { 2 } y + 2 x + 4 y - \cos ( \pi y ) = 17$$
  1. Use implicit differentiation to find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). The point \(P\) with coordinates \(\left( 3 , \frac { 1 } { 2 } \right)\) lies on \(C\).
    The normal to \(C\) at \(P\) meets the \(x\)-axis at the point \(A\).
  2. Find the \(x\) coordinate of \(A\), giving your answer in the form \(\frac { a \pi + b } { c \pi + d }\), where \(a , b , c\) and \(d\) are integers to be determined.
Edexcel C4 2017 June Q4
9 marks Standard +0.3
4. The curve \(C\) has equation $$4 x ^ { 2 } - y ^ { 3 } - 4 x y + 2 ^ { y } = 0$$ The point \(P\) with coordinates \(( - 2,4 )\) lies on \(C\).
  1. Find the exact value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) at the point \(P\). The normal to \(C\) at \(P\) meets the \(y\)-axis at the point \(A\).
  2. Find the \(y\) coordinate of \(A\), giving your answer in the form \(p + q \ln 2\), where \(p\) and \(q\) are constants to be determined.
    (3)
Edexcel P4 2021 June Q5
9 marks Standard +0.8
5. A curve has equation $$y ^ { 2 } = y \mathrm { e } ^ { - 2 x } - 3 x$$
  1. Show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 y \mathrm { e } ^ { - 2 x } + 3 } { \mathrm { e } ^ { - 2 x } - 2 y }$$ The curve crosses the \(y\)-axis at the origin and at the point \(P\).
    The tangent to the curve at the origin and the tangent to the curve at \(P\) meet at the point \(R\).
  2. Find the coordinates of \(R\). \includegraphics[max width=\textwidth, alt={}, center]{960fe82f-c180-422c-b409-a5cdc5fae924-17_2644_1838_121_116}
Edexcel P4 2023 June Q2
10 marks Standard +0.3
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2bacec90-3b67-4307-9608-246ecdb6b5e2-06_695_700_251_683} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve \(C\) with equation $$2 ^ { x } - 4 x y + y ^ { 2 } = 13 \quad y \geqslant 0$$ The point \(P\) lies on \(C\) and has \(x\) coordinate 2
  1. Find the \(y\) coordinate of \(P\).
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). The tangent to \(C\) at \(P\) crosses the \(x\)-axis at the point \(Q\).
  3. Find the \(x\) coordinate of \(Q\), giving your answer in the form \(\frac { a \ln 2 + b } { c \ln 2 + d }\) where \(a , b , c\) and \(d\) are integers to be found.