Find vertical tangent points

A question is this type if and only if it asks to find points where the tangent is parallel to the y-axis (where dx/dy = 0 or dy/dx is undefined).

13 questions · Standard +0.7

Sort by: Default | Easiest first | Hardest first
CAIE P2 2015 June Q7
10 marks Standard +0.3
7 The equation of a curve is $$y ^ { 3 } + 4 x y = 16$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 4 y } { 3 y ^ { 2 } + 4 x }\).
  2. Show that the curve has no stationary points.
  3. Find the coordinates of the point on the curve where the tangent is parallel to the \(y\)-axis.
CAIE P3 2012 November Q7
8 marks Standard +0.3
7 The equation of a curve is \(\ln ( x y ) - y ^ { 3 } = 1\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { y } { x \left( 3 y ^ { 3 } - 1 \right) }\).
  2. Find the coordinates of the point where the tangent to the curve is parallel to the \(y\)-axis, giving each coordinate correct to 3 significant figures.
CAIE P3 2023 June Q5
8 marks Standard +0.3
5 The equation of a curve is \(x ^ { 2 } y - a y ^ { 2 } = 4 a ^ { 3 }\), where \(a\) is a non-zero constant.
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 x y } { 2 a y - x ^ { 2 } }\).
  2. Hence find the coordinates of the points where the tangent to the curve is parallel to the \(y\)-axis. [4]
CAIE P3 2020 March Q7
9 marks Standard +0.8
7 The equation of a curve is \(x ^ { 3 } + 3 x y ^ { 2 } - y ^ { 3 } = 5\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x ^ { 2 } + y ^ { 2 } } { y ^ { 2 } - 2 x y }\).
  2. Find the coordinates of the points on the curve where the tangent is parallel to the \(y\)-axis.
CAIE P3 2021 November Q9
8 marks Standard +0.8
9 The equation of a curve is \(y \mathrm { e } ^ { 2 x } - y ^ { 2 } \mathrm { e } ^ { x } = 2\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 y \mathrm { e } ^ { x } - y ^ { 2 } } { 2 y - \mathrm { e } ^ { x } }\).
  2. Find the exact coordinates of the point on the curve where the tangent is parallel to the \(y\)-axis.
Edexcel P3 2023 June Q10
8 marks Standard +0.8
10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{bef290fb-fbac-4c9c-981e-5e323ac7182e-30_719_876_246_598} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of the curve with equation $$x = \frac { 2 y ^ { 2 } + 6 } { 3 y - 3 }$$
  1. Find \(\frac { \mathrm { d } x } { \mathrm {~d} y }\) giving your answer as a fully simplified fraction. The tangents at points \(P\) and \(Q\) on the curve are parallel to the \(y\)-axis, as shown in Figure 4.
  2. Use the answer to part (a) to find the equations of these two tangents.
Edexcel C4 2013 June Q7
12 marks Standard +0.8
7. A curve is described by the equation $$x ^ { 2 } + 4 x y + y ^ { 2 } + 27 = 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). A point \(Q\) lies on the curve.
    The tangent to the curve at \(Q\) is parallel to the \(y\)-axis.
    Given that the \(x\) coordinate of \(Q\) is negative,
  2. use your answer to part (a) to find the coordinates of \(Q\).
OCR MEI C3 2008 January Q6
8 marks Standard +0.8
6 Fig. 6 shows the curve \(\mathrm { e } ^ { 2 y } = x ^ { 2 } + y\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a66c2da5-46b4-4467-933e-179be04b03b1-3_739_1339_349_404} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 x } { 2 \mathrm { e } ^ { 2 y } - 1 }\).
  2. Hence find to 3 significant figures the coordinates of the point P , shown in Fig. 6, where the curve has infinite gradient. Section B (36 marks)
OCR MEI C3 Q5
8 marks Standard +0.8
5 Fig. 6 shows the curve \(\mathrm { e } ^ { 2 y } = x ^ { 2 } + y\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e3850377-bd1a-4e3c-8424-e3db7fd3c4db-3_736_1331_893_459} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 x } { 2 \mathrm { e } ^ { 2 y } - 1 }\).
  2. Hence find to 3 significant figures the coordinates of the point P , shown in Fig. 6, where the curve has infinite gradient.
OCR C4 2014 June Q6
8 marks Standard +0.8
6 \includegraphics[max width=\textwidth, alt={}, center]{02e31b5d-10dd-42b1-885a-6db610d788c3-2_570_1191_1509_420} The diagram shows the curve with equation \(x ^ { 2 } + y ^ { 3 } - 8 x - 12 y = 4\). At each of the points \(P\) and \(Q\) the tangent to the curve is parallel to the \(y\)-axis. Find the coordinates of \(P\) and \(Q\).
Edexcel PMT Mocks Q9
8 marks Standard +0.8
9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{63d85737-99d4-4916-a479-fe44f77b1505-16_871_1017_267_548} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of the curve with equation \(x ^ { 2 } + y ^ { 3 } - 10 x - 12 y - 5 = 0\) a. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 10 - 2 x } { 3 y ^ { 2 } - 12 }\) At each of the points \(P\) and \(Q\) the tangent to the curve is parallel to the \(y\)-axis.
b. Find the exact coordinates of \(Q\).
Edexcel Paper 1 2018 June Q9
10 marks
9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b5f50f17-9f1b-4b4c-baf3-e50de5f2ea9c-22_537_748_242_662} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of the curve with equation \(x ^ { 2 } - 2 x y + 3 y ^ { 2 } = 50\)
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { y - x } { 3 y - x }\) The curve is used to model the shape of a cycle track with both \(x\) and \(y\) measured in km .
    The points \(P\) and \(Q\) represent points that are furthest west and furthest east of the origin \(O\), as shown in Figure 4. Using part (a),
  2. find the exact coordinates of the point \(P\).
  3. Explain briefly how to find the coordinates of the point that is furthest north of the origin \(O\). (You do not need to carry out this calculation).
OCR H240/03 2020 November Q6
11 marks Challenging +1.2
6 In this question you must show detailed reasoning.
\includegraphics[max width=\textwidth, alt={}]{373fa8e4-9c10-4fcf-9e00-e497161b4c6d-06_495_800_312_244}
The diagram shows the curve with equation \(4 x y = 2 \left( x ^ { 2 } + 4 y ^ { 2 } \right) - 9 x\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 4 x - 4 y - 9 } { 4 x - 16 y }\). At the point \(P\) on the curve the tangent to the curve is parallel to the \(y\)-axis and at the point \(Q\) on the curve the tangent to the curve is parallel to the \(x\)-axis.
  2. Show that the distance \(P Q\) is \(k \sqrt { 5 }\), where \(k\) is a rational number to be determined.