Describe geometric transformation from matrix

A question is this type if and only if it asks to identify or describe the geometric transformation(s) represented by a given matrix (rotation, reflection, stretch, shear, etc.).

2 questions · Challenging +1.5

Sort by: Default | Easiest first | Hardest first
OCR Further Pure Core 2 2020 November Q7
6 marks Challenging +1.2
7 The matrix \(\mathbf { A }\) is given by \(\mathbf { A } = \left( \begin{array} { r r } 0.6 & 2.4 \\ - 0.8 & 1.8 \end{array} \right)\).
  1. Find \(\operatorname { det } \mathbf { A }\). The matrix A represents a stretch parallel to one of the coordinate axes followed by a rotation about the origin.
  2. By considering the determinants of these transformations, determine the scale factor of the stretch.
  3. Explain whether the stretch is parallel to the \(x\)-axis or the \(y\)-axis, justifying your answer.
  4. Find the angle of rotation.
OCR MEI Further Extra Pure 2022 June Q5
16 marks Challenging +1.8
5 A surface \(S\) is defined by \(z = f ( x , y )\), where \(f ( x , y ) = y e ^ { - \left( x ^ { 2 } + 2 x + 2 \right) y }\).
    1. Find \(\frac { \partial f } { \partial x }\).
    2. Show that \(\frac { \partial f } { \partial y } = - \left( x ^ { 2 } y + 2 x y + 2 y - 1 \right) e ^ { - \left( x ^ { 2 } + 2 x + 2 \right) y }\).
    3. Determine the coordinates of any stationary points on \(S\). Fig. 5.1 shows the graph of \(z = e ^ { - x ^ { 2 } }\) and Fig. 5.2 shows the contour of \(S\) defined by \(z = 0.25\). \begin{figure}[h]
      \includegraphics[alt={},max width=\textwidth]{76f3559a-f3b3-4a21-878f-adb261dd1236-5_478_686_822_244} \captionsetup{labelformat=empty} \caption{Fig. 5.1}
      \end{figure} \begin{figure}[h]
      \includegraphics[alt={},max width=\textwidth]{76f3559a-f3b3-4a21-878f-adb261dd1236-5_478_437_822_1105} \captionsetup{labelformat=empty} \caption{Fig. 5.2}
      \end{figure}
  1. Specify a sequence of transformations which transforms the graph of \(\mathrm { z } = \mathrm { e } ^ { - \mathrm { x } ^ { 2 } }\) onto the graph of the section defined by \(z = f ( x , 1 )\).
  2. Hence, or otherwise, sketch the section defined by \(z = f ( x , 1 )\).
  3. Using Fig. 5.2 and your answer to part (c), classify any stationary points on \(S\), justifying your answer. You are given that \(P\) is a point on \(S\) where \(z = 0\).
  4. Find, in vector form, the equation of the tangent plane to \(S\) at \(P\). The tangent plane found in part (e) intersects \(S\) in a straight line, \(L\).
  5. Write down, in vector form, the equation of \(L\).