Standard verify, factorise, solve

Questions that verify a given factor, factorise the cubic completely, and solve f(x) = 0 for x directly (or write down roots).

13 questions

CAIE P2 2004 June Q3
3 The cubic polynomial \(2 x ^ { 3 } + a x ^ { 2 } - 13 x - 6\) is denoted by \(\mathrm { f } ( x )\). It is given that ( \(x - 3\) ) is a factor of \(\mathrm { f } ( x )\).
  1. Find the value of \(a\).
  2. When \(a\) has this value, solve the equation \(\mathrm { f } ( x ) = 0\).
CAIE P2 2006 November Q3
3 The polynomial \(4 x ^ { 3 } - 7 x + a\), where \(a\) is a constant, is denoted by \(\mathrm { p } ( x )\). It is given that ( \(2 x - 3\) ) is a factor of \(\mathrm { p } ( x )\).
  1. Show that \(a = - 3\).
  2. Hence, or otherwise, solve the equation \(\mathrm { p } ( x ) = 0\).
CAIE P2 2007 November Q5
5 The polynomial \(3 x ^ { 3 } + 8 x ^ { 2 } + a x - 2\), where \(a\) is a constant, is denoted by \(\mathrm { p } ( x )\). It is given that \(( x + 2 )\) is a factor of \(\mathrm { p } ( x )\).
  1. Find the value of \(a\).
  2. When \(a\) has this value, solve the equation \(\mathrm { p } ( x ) = 0\).
Edexcel C12 2016 January Q6
6. $$f ( x ) = x ^ { 3 } + x ^ { 2 } - 12 x - 18$$
  1. Use the factor theorem to show that \(( x + 3 )\) is a factor of \(\mathrm { f } ( x )\).
  2. Factorise \(\mathrm { f } ( x )\).
  3. Hence find exact values for all the solutions of the equation \(\mathrm { f } ( x ) = 0\)
Edexcel C2 2007 January Q5
5. $$f ( x ) = x ^ { 3 } + 4 x ^ { 2 } + x - 6$$
  1. Use the factor theorem to show that \(( x + 2 )\) is a factor of \(\mathrm { f } ( x )\).
  2. Factorise \(\mathrm { f } ( x )\) completely.
  3. Write down all the solutions to the equation $$x ^ { 3 } + 4 x ^ { 2 } + x - 6 = 0$$
OCR MEI C1 Q7
7 Show that ( \(x - 2\) ) is a factor of \(\mathrm { f } ( x ) = x ^ { 3 } - x ^ { 2 } - 4 x + 4\).
Hence solve the equation \(x ^ { 3 } - x ^ { 2 } - 4 x + 4 = 0\).
OCR MEI C1 Q5
5 You are given that \(\mathrm { f } ( x ) = x ^ { 3 } - 7 x + 6\).
  1. Show that ( \(x - 2\) ) is a factor of \(\mathrm { f } ( x )\).
  2. Solve the equation \(\mathrm { f } ( x ) = 0\).
OCR C2 2014 June Q7
7 The cubic polynomial \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = 12 - 22 x + 9 x ^ { 2 } - x ^ { 3 }\).
  1. Find the remainder when \(\mathrm { f } ( x )\) is divided by \(( x + 2 )\).
  2. Show that ( \(3 - x\) ) is a factor of \(\mathrm { f } ( x )\).
  3. Express \(\mathrm { f } ( x )\) as the product of a linear factor and a quadratic factor.
  4. Hence solve the equation \(\mathrm { f } ( x ) = 0\), giving each root in simplified surd form where appropriate.
OCR MEI AS Paper 1 2018 June Q6
6 In this question you must show detailed reasoning.
You are given that \(\mathrm { f } ( x ) = 4 x ^ { 3 } - 3 x + 1\).
  1. Use the factor theorem to show that \(( x + 1 )\) is a factor of \(\mathrm { f } ( x )\).
  2. Solve the equation \(\mathrm { f } ( x ) = 0\).
OCR MEI Paper 1 2020 November Q7
7 In this question you must show detailed reasoning. The function \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = x ^ { 3 } + x ^ { 2 } - 8 x - 12\) for all values of \(x\).
  1. Use the factor theorem to show that \(( x + 2 )\) is a factor of \(\mathrm { f } ( x )\).
  2. Solve the equation \(\mathrm { f } ( x ) = 0\).
SPS SPS FM Pure 2023 November Q2
2. $$\mathrm { f } ( x ) = x ^ { 3 } + 4 x ^ { 2 } + x - 6$$
  1. Use the factor theorem to show that \(( x + 2 )\) is a factor of \(\mathrm { f } ( x )\).
  2. Factorise f(x) completely.
  3. Write down all the solutions to the equation $$x ^ { 3 } + 4 x ^ { 2 } + x - 6 = 0$$ [BLANK PAGE]
SPS SPS SM Pure 2023 February Q1
1. $$f ( x ) = x ^ { 3 } + x ^ { 2 } - 12 x - 18$$
  1. Use the factor theorem to show that \(( x + 3 )\) is a factor of \(f ( x )\).
    (2)
  2. Factorise \(f ( x )\) to a linear and quadratic factor.
    (2)
  3. Hence find exact values for all the solutions of the equation \(\mathrm { f } ( x ) = 0\)
    (3)
AQA C1 2008 January Q6
6
  1. The polynomial \(\mathrm { p } ( x )\) is given by \(\mathrm { p } ( x ) = x ^ { 3 } - 7 x - 6\).
    1. Use the Factor Theorem to show that \(x + 1\) is a factor of \(\mathrm { p } ( x )\).
    2. Express \(\mathrm { p } ( x ) = x ^ { 3 } - 7 x - 6\) as the product of three linear factors.
  2. The curve with equation \(y = x ^ { 3 } - 7 x - 6\) is sketched below.
    \includegraphics[max width=\textwidth, alt={}, center]{de4f827d-f237-488a-9177-3d85d0cb1771-4_403_762_651_641} The curve cuts the \(x\)-axis at the point \(A\) and the points \(B ( - 1,0 )\) and \(C ( 3,0 )\).
    1. State the coordinates of the point \(A\).
    2. Find \(\int _ { - 1 } ^ { 3 } \left( x ^ { 3 } - 7 x - 6 \right) \mathrm { d } x\).
    3. Hence find the area of the shaded region bounded by the curve \(y = x ^ { 3 } - 7 x - 6\) and the \(x\)-axis between \(B\) and \(C\).
    4. Find the gradient of the curve \(y = x ^ { 3 } - 7 x - 6\) at the point \(B\).
    5. Hence find an equation of the normal to the curve at the point \(B\).