Volume of tetrahedron using scalar triple product

A question is this type if and only if it asks to find the volume of a tetrahedron given position vectors of vertices, using the scalar triple product formula.

4 questions · Standard +0.9

Sort by: Default | Easiest first | Hardest first
OCR Further Additional Pure 2023 June Q3
7 marks Challenging +1.2
3 The points \(A\) and \(B\) have position vectors \(\mathbf { a } = \mathbf { i } + \mathrm { pj } + \mathrm { q } \mathbf { k }\) and \(\mathbf { b } = 2 \mathbf { i } + 3 \mathbf { j } + 2 \mathbf { k }\) respectively, relative to the origin \(O\).
  1. Determine the value of \(p\) and the value of \(q\) for which \(\mathbf { a } \times \mathbf { b } = 2 \mathbf { i } + 6 \mathbf { j } - 1 \mathbf { 1 } \mathbf { k }\).
  2. The point \(C\) has coordinates ( \(d , e , f\) ) and the tetrahedron \(O A B C\) has volume 7.
    1. Using the values of \(p\) and \(q\) found in part (a), find the possible relationships between \(d , e\) and \(f\).
    2. Explain the geometrical significance of these relationships.
OCR Further Additional Pure 2021 November Q3
6 marks Standard +0.8
3 The points \(P , Q\) and \(R\) have position vectors \(\mathbf { p } = 2 \mathbf { i } + \mathbf { j } + 5 \mathbf { k } , \mathbf { q } = \mathbf { i } - \mathbf { j } + \mathbf { k }\) and \(\mathbf { r } = 2 \mathbf { i } + \mathbf { j } + t \mathbf { k }\) respectively, relative to the origin \(O\). Determine the value(s) of \(t\) in each of the following cases.
  1. The line \(O R\) is parallel to \(\mathbf { p } \times \mathbf { q }\).
  2. The volume of tetrahedron \(O P Q R\) is 13 .
OCR Further Additional Pure Specimen Q2
3 marks Standard +0.8
2 Find the volume of tetrahedron OABC , where O is the origin, \(\mathrm { A } = ( 2,3,1 ) , \mathrm { B } = ( - 4,2,5 )\) and \(\mathrm { C } = ( 1,4,4 )\).
OCR Further Additional Pure 2018 March Q2
5 marks Standard +0.8
2 Four points \(A , B , C\) and \(D\) have coordinates \(( 1,2,5 ) , ( 3,4 , - 4 ) , ( 6,2,3 )\) and \(( 0,3,7 )\) respectively. Find the volume of tetrahedron \(A B C D\).