Area of triangle using vector product

A question is this type if and only if it asks to find the area of a triangle given position vectors of its vertices, using the vector product formula.

6 questions · Standard +0.4

Sort by: Default | Easiest first | Hardest first
CAIE FP1 2017 November Q6
9 marks Standard +0.3
6 The points \(A , B\) and \(C\) have position vectors \(2 \mathbf { i } - \mathbf { j } + \mathbf { k } , 3 \mathbf { i } + 4 \mathbf { j } - \mathbf { k }\) and \(- \mathbf { i } + 2 \mathbf { j } + 4 \mathbf { k }\) respectively.
  1. Find the area of the triangle \(A B C\).
    .................................................................................................................................... \includegraphics[max width=\textwidth, alt={}]{68e31138-756a-433a-bf42-0fdfadad091e-08_72_1566_484_328} .................................................................................................................................... .................................................................................................................................... \includegraphics[max width=\textwidth, alt={}, center]{68e31138-756a-433a-bf42-0fdfadad091e-08_71_1563_772_331} \includegraphics[max width=\textwidth, alt={}, center]{68e31138-756a-433a-bf42-0fdfadad091e-08_71_1563_868_331}
  2. Find the perpendicular distance of the point \(A\) from the line \(B C\).
  3. Find the cartesian equation of the plane through \(A , B\) and \(C\).
CAIE FP1 2012 November Q4
6 marks Standard +0.3
4 The points \(A , B\) and \(C\) have position vectors \(\mathbf { i } + 2 \mathbf { j } + 2 \mathbf { k } , 2 \mathbf { i } + 4 \mathbf { j } + 5 \mathbf { k }\) and \(2 \mathbf { i } + 3 \mathbf { j } + 4 \mathbf { k }\) respectively. Find \(\overrightarrow { A B } \times \overrightarrow { A C }\). Deduce, in either order, the exact value of
  1. the area of the triangle \(A B C\),
  2. the perpendicular distance from \(C\) to \(A B\).
OCR Further Additional Pure AS 2018 June Q1
8 marks Standard +0.3
1 The points \(A , B\) and \(C\) have position vectors \(6 \mathbf { i } + 2 \mathbf { j } + 4 \mathbf { k } , 13 \mathbf { i } + 2 \mathbf { j } + 5 \mathbf { k }\) and \(16 \mathbf { i } + 6 \mathbf { j } + 3 \mathbf { k }\) respectively.
  1. Using the vector product, calculate the area of triangle \(A B C\).
  2. Hence find, in simplest surd form, the perpendicular distance from \(C\) to the line through \(A\) and \(B\).
OCR Further Additional Pure AS 2020 November Q6
9 marks Challenging +1.2
6 The points \(A\) and \(B\) have position vectors \(\mathbf { a } = \mathbf { i } + 2 \mathbf { j } + \mathbf { k }\) and \(\mathbf { b } = - 3 \mathbf { i } + 4 \mathbf { j } - 5 \mathbf { k }\) respectively.
  1. Determine the area of triangle \(O A B\), giving your answer in an exact form. The point \(C\) lies on the line \(( \mathbf { r } - \mathbf { a } ) \times ( \mathbf { b } - \mathbf { a } ) = \mathbf { O }\) such that the area of triangle \(O A C\) is half the area of triangle \(O A B\).
  2. Determine the two possible position vectors of \(C\).
OCR Further Additional Pure AS 2017 December Q7
7 marks Standard +0.8
7 The points \(A ( 0,35,120 ) , B ( 28,21,120 )\) and \(C ( 96,35 , - 72 )\) lie on the sphere \(S\), with centre \(O\) and radius 125 . Triangle \(A B C\) is denoted by \(\triangle\).
  1. Find, in simplest surd form, the area of \(\Delta\). The points \(A , B\) and \(C\) also form a spherical triangle, \(T\), on the surface of \(S\). Each 'side' of \(T\) is the shorter arc of the circle, centre \(O\) and radius 125, which passes through two of the given vertices of \(T\). In order to find an approximation to the area of the spherical triangle, \(T\) is being modelled by \(\Delta\).
  2. (a) State the assumption being made in using this model.
    (b) Say, giving a reason, whether the model gives an under-estimate or an over-estimate of the area of \(T\).
OCR Further Additional Pure AS 2021 November Q1
5 marks Moderate -0.3
1 The points \(A , B\) and \(C\) have position vectors \(\mathbf { a } = \left( \begin{array} { l } 3 \\ 0 \\ 0 \end{array} \right) , \mathbf { b } = \left( \begin{array} { l } 0 \\ 4 \\ 0 \end{array} \right)\) and \(\mathbf { c } = \left( \begin{array} { l } 0 \\ 0 \\ 1 \end{array} \right)\) respectively, relative to the origin \(O\).
    1. Calculate \(\mathbf { a } \times \mathbf { b }\), giving your answer as a multiple of \(\mathbf { c }\).
    2. Explain, geometrically, why \(\mathbf { a } \times \mathbf { b }\) must be a multiple of \(\mathbf { c }\).
  1. Use a vector product method to calculate the area of triangle \(A B C\).