Sigma Notation Manipulation

A question is this type if and only if it requires expressing a series in sigma notation, evaluating simple sigma expressions, or converting between different sigma representations.

7 questions · Standard +0.8

Sort by: Default | Easiest first | Hardest first
OCR MEI FP3 2014 June Q3
24 marks Hard +2.3
3
  1. A curve has intrinsic equation \(s = 2 \ln \left( \frac { \pi } { \pi - 3 \psi } \right)\) for \(0 \leqslant \psi < \frac { 1 } { 3 } \pi\), where \(s\) is the arc length measured from a fixed point P and \(\tan \psi = \frac { \mathrm { d } y } { \mathrm {~d} x } . \mathrm { P }\) is in the third quadrant. The curve passes through the origin O , at which point \(\psi = \frac { 1 } { 6 } \pi . \mathrm { Q }\) is the point on the curve at which \(\psi = \frac { 3 } { 10 } \pi\).
    1. Express \(\psi\) in terms of \(s\), and sketch the curve, indicating the points \(\mathrm { O } , \mathrm { P }\) and Q .
    2. Find the arc length OQ .
    3. Find the radius of curvature at the point O .
    4. Find the coordinates of the centre of curvature corresponding to the point O .
    1. Find the surface area of revolution formed when the curve \(y = \frac { 1 } { 3 } \sqrt { x } ( x - 3 )\) for \(1 \leqslant x \leqslant 4\) is rotated through \(2 \pi\) radians about the \(y\)-axis.
    2. The curve in part (b)(i) is one member of the family \(y = \frac { 1 } { 9 } \lambda \sqrt { x } ( x - \lambda )\), where \(\lambda\) is a positive parameter. Find the equation of the envelope of this family of curves.
Edexcel AEA 2002 Specimen Q1
7 marks Standard +0.8
1.(a)By considering the series $$1 + t + t ^ { 2 } + t ^ { 3 } + \ldots + t ^ { n }$$ or otherwise,sum the series $$1 + 2 t + 3 t ^ { 2 } + 4 t ^ { 3 } + \ldots + n t ^ { n - 1 }$$ for \(t \neq 1\) .
(b)Hence find and simplify an expression for $$1 + 2 \times 3 + 3 \times 3 ^ { 2 } + 4 \times 3 ^ { 3 } + \ldots + 2001 \times 3 ^ { 2000 }$$ (c)Write down an expression for both the sums of the series in part(a)for the case where \(t = 1\) .
Edexcel AEA 2011 June Q3
13 marks Challenging +1.8
3.A sequence \(\left\{ u _ { n } \right\}\) is given by $$\begin{aligned} u _ { 1 } & = k & & \\ u _ { 2 n } & = u _ { 2 n - 1 } \times p & & n \geqslant 1 \\ u _ { 2 n + 1 } & = u _ { 2 n } \times q & & n \geqslant 1 \end{aligned}$$ where \(k , p\) and \(q\) are positive constants with \(p q \neq 1\)
(a)Write down the first 6 terms of this sequence.
(b)Show that \(\sum _ { r = 1 } ^ { 2 n } u _ { r } = \frac { k ( 1 + p ) \left( 1 - ( p q ) ^ { n } \right) } { 1 - p q }\) In part(c) \([ x ]\) means the integer part of \(x\) ,so for example \([ 2.73 ] = 2 , [ 4 ] = 4\) and \([ 0 ] = 0\)
(c)Find \(\sum _ { r = 1 } ^ { \infty } 6 \times \left( \frac { 4 } { 3 } \right) ^ { \left[ \frac { r } { 2 } \right] } \times \left( \frac { 3 } { 5 } \right) ^ { \left[ \frac { r - 1 } { 2 } \right] }\)
CAIE FP1 2017 June Q1
5 marks Standard +0.8
1 It is given that \(\sum _ { r = 1 } ^ { n } u _ { r } = n ^ { 2 } ( 2 n + 3 )\), where \(n\) is a positive integer.
  1. Find \(\sum _ { r = n + 1 } ^ { 2 n } u _ { r }\).
  2. Find \(u _ { r }\).
OCR Further Additional Pure 2020 November Q2
9 marks Challenging +1.2
2 For \(x , y \in \mathbb { R }\), the function f is given by \(\mathrm { f } ( x , y ) = 2 x ^ { 2 } \mathrm { y } ^ { 7 } + 3 x ^ { 5 } y ^ { 4 } - 5 x ^ { 8 } y\).
  1. Prove that \(\mathrm { xf } _ { \mathrm { x } } + \mathrm { yf } _ { \mathrm { y } } = \mathrm { nf }\), where \(n\) is a positive integer to be determined.
  2. Show that \(\mathrm { xf } _ { \mathrm { xx } } + \mathrm { yf } _ { \mathrm { xy } } = ( \mathrm { n } - 1 ) \mathrm { f } _ { \mathrm { x } }\).
OCR MEI C2 2010 June Q1
2 marks Moderate -0.8
1 You are given that $$\begin{aligned} u _ { 1 } & = 1 \\ u _ { n + 1 } & = \frac { u _ { n } } { 1 + u _ { n } } \end{aligned}$$ Find the values of \(u _ { 2 } , u _ { 3 }\) and \(u _ { 4 }\). Give your answers as fractions.
OCR MEI C2 2010 June Q2
4 marks Moderate -0.8
2
  1. Evaluate \(\sum _ { r = 2 } ^ { 5 } \frac { 1 } { r - 1 }\).
  2. Express the series \(2 \times 3 + 3 \times 4 + 4 \times 5 + 5 \times 6 + 6 \times 7\) in the form \(\sum _ { r = 2 } ^ { a } \mathrm { f } ( r )\) where \(\mathrm { f } ( r )\) and \(a\) are to be determined.