Forces in vector form (i, j notation)

A question is this type if and only if forces are given as vectors in i, j component form and you must find resultant force, acceleration, equilibrium conditions, or resolve using vector addition.

56 questions · Moderate -0.6

Sort by: Default | Easiest first | Hardest first
Edexcel M1 2012 January Q3
8 marks Moderate -0.8
3. Three forces \(\mathbf { F } _ { 1 } , \mathbf { F } _ { 2 }\) and \(\mathbf { F } _ { 3 }\) acting on a particle \(P\) are given by $$\begin{aligned} & \mathbf { F } _ { 1 } = ( 7 \mathbf { i } - 9 \mathbf { j } ) \mathrm { N } \\ & \mathbf { F } _ { 2 } = ( 5 \mathbf { i } + 6 \mathbf { j } ) \mathrm { N } \\ & \mathbf { F } _ { 3 } = ( p \mathbf { i } + q \mathbf { j } ) \mathrm { N } \end{aligned}$$ where \(p\) and \(q\) are constants.
Given that \(P\) is in equilibrium,
  1. find the value of \(p\) and the value of \(q\). The force \(\mathbf { F } _ { 3 }\) is now removed. The resultant of \(\mathbf { F } _ { 1 }\) and \(\mathbf { F } _ { 2 }\) is \(\mathbf { R }\). Find
  2. the magnitude of \(\mathbf { R }\),
  3. the angle, to the nearest degree, that the direction of \(\mathbf { R }\) makes with \(\mathbf { j }\).
Edexcel M1 2014 June Q5
12 marks Moderate -0.3
5. A particle \(P\) of mass 0.5 kg is moving under the action of a single force \(( 3 \mathbf { i } - 2 \mathbf { j } ) \mathrm { N }\).
  1. Show that the magnitude of the acceleration of \(P\) is \(2 \sqrt { 13 } \mathrm {~m} \mathrm {~s} ^ { - 2 }\). At time \(t = 0\), the velocity of \(P\) is \(( \mathbf { i } + 3 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\).
  2. Find the velocity of \(P\) at time \(t = 2\) seconds. Another particle \(Q\) moves with constant velocity \(\mathbf { v } = ( 2 \mathbf { i } - \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\).
  3. Find the distance moved by \(Q\) in 2 seconds.
  4. Show that at time \(t = 3.5\) seconds both particles are moving in the same direction.
Edexcel M1 2017 June Q1
6 marks Moderate -0.8
  1. Three forces, \(( 15 \mathbf { i } + \mathbf { j } ) \mathrm { N } , ( 5 q \mathbf { i } - p \mathbf { j } ) \mathrm { N }\) and \(( - 3 p \mathbf { i } - q \mathbf { j } ) \mathrm { N }\), where \(p\) and \(q\) are constants, act on a particle. Given that the particle is in equilibrium, find the value of \(p\) and the value of \(q\).
    (6)
Edexcel M1 2018 June Q6
13 marks Moderate -0.3
6. [In this question \(\mathbf { i }\) and \(\mathbf { j }\) are horizontal unit vectors due east and due north respectively] Two forces \(\mathbf { F } _ { 1 }\) and \(\mathbf { F } _ { 2 }\) act on a particle \(P\) of mass 0.5 kg .
\(\mathbf { F } _ { 1 } = ( 4 \mathbf { i } - 6 \mathbf { j } ) \mathrm { N }\) and \(\mathbf { F } _ { 2 } = ( p \mathbf { i } + q \mathbf { j } ) \mathrm { N }\).
Given that the resultant force of \(\mathbf { F } _ { 1 }\) and \(\mathbf { F } _ { 2 }\) is in the same direction as \(- 2 \mathbf { i } - \mathbf { j }\),
  1. show that \(p - 2 q = - 16\) Given that \(q = 3\)
  2. find the magnitude of the acceleration of \(P\),
  3. find the direction of the acceleration of \(P\), giving your answer as a bearing to the nearest degree. XXXXXXXXXXIXITEINTIIS AREA XX女X女X女X女X DO NOT WIRIE IN THS AREA.
Edexcel M1 2017 January Q2
9 marks Moderate -0.8
  1. A particle \(P\) of mass 0.5 kg moves under the action of a single constant force ( \(2 \mathbf { i } + 3 \mathbf { j }\) )N.
    1. Find the acceleration of \(P\).
    At time \(t\) seconds, \(P\) has velocity \(\mathbf { v } \mathrm { m } \mathrm { s } ^ { - 1 }\). When \(t = 0 , \mathbf { v } = 4 \mathbf { i }\)
  2. Find the speed of \(P\) when \(t = 3\) Given that \(P\) is moving parallel to the vector \(2 \mathbf { i } + \mathbf { j }\) at time \(t = T\)
  3. find the value of \(T\).
Edexcel M1 2018 January Q6
9 marks Moderate -0.3
  1. \hspace{0pt} [In this question \(\mathbf { i }\) and \(\mathbf { j }\) are perpendicular horizontal unit vectors.]
A particle \(P\) of mass 2 kg moves under the action of two forces, \(( 2 \mathbf { i } + 3 \mathbf { j } ) \mathrm { N }\) and \(( 4 \mathbf { i } - 5 \mathbf { j } ) \mathrm { N }\).
  1. Find the magnitude of the acceleration of \(P\). At time \(t = 0 , P\) has velocity ( \(- u \mathbf { i } + u \mathbf { j }\) ) \(\mathrm { m } \mathrm { s } ^ { - 1 }\), where \(u\) is a positive constant. At time \(t = T\) seconds, \(P\) has velocity \(( 10 \mathbf { i } + 2 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\).
  2. Find
    1. the value of \(T\),
    2. the value of \(u\).
Edexcel M1 2022 January Q6
12 marks Moderate -0.3
  1. \hspace{0pt} [In this question \(\mathbf { i }\) and \(\mathbf { j }\) are horizontal unit vectors.]
A particle \(P\) of mass 2 kg moves under the action of two forces, \(( p \mathbf { i } + q \mathbf { j } ) \mathrm { N }\) and \(( 2 q \mathbf { i } + p \mathbf { j } ) \mathrm { N }\), where \(p\) and \(q\) are constants. Given that the acceleration of \(P\) is \(( \mathbf { i } - \mathbf { j } ) \mathrm { ms } ^ { - 2 }\)
  1. find the value of \(p\) and the value of \(q\).
  2. Find the size of the angle between the direction of the acceleration and the vector \(\mathbf { j }\). At time \(t = 0\), the velocity of \(P\) is \(( 3 \mathbf { i } - 4 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\)
    At \(t = T\) seconds, \(P\) is moving in the direction of the vector \(( 11 \mathbf { i } - 13 \mathbf { j } )\).
  3. Find the value of \(T\).
Edexcel M1 2015 June Q1
6 marks Moderate -0.8
  1. Three forces \(\mathbf { F } _ { 1 } , \mathbf { F } _ { 2 }\) and \(\mathbf { F } _ { 3 }\) act on a particle \(P\).
$$\mathbf { F } _ { 1 } = ( 2 \mathbf { i } + 3 a \mathbf { j } ) \mathrm { N } ; \quad \mathbf { F } _ { 2 } = ( 2 a \mathbf { i } + b \mathbf { j } ) \mathrm { N } ; \quad \mathbf { F } _ { 3 } = ( b \mathbf { i } + 4 \mathbf { j } ) \mathrm { N } .$$ The particle \(P\) is in equilibrium under the action of these forces.
Find the value of \(a\) and the value of \(b\).
Edexcel M1 2016 June Q5
10 marks Moderate -0.8
5. Two forces, \(\mathbf { F } _ { 1 }\) and \(\mathbf { F } _ { 2 }\), act on a particle \(A\).
\(\mathbf { F } _ { 1 } = ( 2 \mathbf { i } - 3 \mathbf { j } ) \mathrm { N }\) and \(\mathbf { F } _ { 2 } = ( p \mathbf { i } + q \mathbf { j } ) \mathrm { N }\), where \(p\) and \(q\) are constants.
Given that the resultant of \(\mathbf { F } _ { 1 }\) and \(\mathbf { F } _ { 2 }\) is parallel to ( \(\mathbf { i } + 2 \mathbf { j }\) ),
  1. show that \(2 p - q + 7 = 0\) Given that \(q = 11\) and that the mass of \(A\) is 2 kg , and that \(\mathbf { F } _ { 1 }\) and \(\mathbf { F } _ { 2 }\) are the only forces acting on \(A\),
  2. find the magnitude of the acceleration of \(A\).
Edexcel M1 2021 June Q3
9 marks Moderate -0.3
3. [In this question \(\mathbf { i }\) and \(\mathbf { j }\) are perpendicular horizontal unit vectors.] Three forces, \(\mathbf { F } _ { 1 } , \mathbf { F } _ { 2 }\) and \(\mathbf { F } _ { 3 }\), are given by $$\mathbf { F } _ { 1 } = ( 5 \mathbf { i } + 2 \mathbf { j } ) \mathrm { N } \quad \mathbf { F } _ { 2 } = ( - 3 \mathbf { i } + \mathbf { j } ) \mathrm { N } \quad \mathbf { F } _ { 3 } = ( a \mathbf { i } + b \mathbf { j } ) \mathrm { N }$$ where \(a\) and \(b\) are constants.
The forces \(\mathbf { F } _ { 1 } , \mathbf { F } _ { 2 }\) and \(\mathbf { F } _ { 3 }\) act on a particle \(P\) of mass 4 kg .
Given that \(P\) rests in equilibrium on a smooth horizontal surface under the action of these three forces,
  1. find the size of the angle between the direction of \(\mathbf { F } _ { 3 }\) and the direction of \(- \mathbf { j }\). The force \(\mathbf { F } _ { 3 }\) is now removed and replaced by the force \(\mathbf { F } _ { 4 }\) given by \(\mathbf { F } _ { 4 } = \lambda ( \mathbf { i } + 3 \mathbf { j } )\) N, where \(\lambda\) is a positive constant. When the three forces \(\mathbf { F } _ { 1 } , \mathbf { F } _ { 2 }\) and \(\mathbf { F } _ { 4 }\) act on \(P\), the acceleration of \(P\) has magnitude \(3.25 \mathrm {~m} \mathrm {~s} ^ { - 2 }\)
  2. Find the value of \(\lambda\).
Edexcel M1 2023 June Q2
10 marks Moderate -0.8
  1. A particle \(P\) rests in equilibrium on a smooth horizontal plane.
A system of three forces, \(\mathbf { F } _ { 1 } \mathrm {~N} , \mathbf { F } _ { 2 } \mathrm {~N}\) and \(\mathbf { F } _ { 3 } \mathrm {~N}\) where $$\begin{aligned} & \mathbf { F } _ { 1 } = ( 3 c \mathbf { i } + 4 c \mathbf { j } ) \\ & \mathbf { F } _ { 2 } = ( - 14 \mathbf { i } + 7 \mathbf { j } ) \end{aligned}$$ is applied to \(P\).
Given that \(P\) remains in equilibrium,
  1. find \(\mathbf { F } _ { 3 }\) in terms of \(c\), \(\mathbf { i }\) and \(\mathbf { j }\). The force \(\mathbf { F } _ { 3 }\) is removed from the system.
    Given that \(c = 2\)
  2. find the size of the angle between the direction of \(\mathbf { i }\) and the direction of the resultant force acting on \(P\). The mass of \(P\) is \(m \mathrm {~kg}\).
    Given that the magnitude of the acceleration of \(P\) is \(8.5 \mathrm {~m} \mathrm {~s} ^ { - 2 }\)
  3. find the value of \(m\).
Edexcel M1 2016 October Q2
9 marks Moderate -0.3
2. [In this question \(\mathbf { i }\) and \(\mathbf { j }\) are perpendicular unit vectors in a horizontal plane.] Three forces, \(( - 10 \mathbf { i } + a \mathbf { j } ) \mathrm { N } , ( b \mathbf { i } - 5 \mathbf { j } ) \mathrm { N }\) and \(( 2 a \mathbf { i } + 7 \mathbf { j } ) \mathrm { N }\), where \(a\) and \(b\) are constants, act on a particle \(P\) of mass 3 kg . The acceleration of \(P\) is \(( 3 \mathbf { i } + 4 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 2 }\)
  1. Find the value of \(a\) and the value of \(b\). At time \(t = 0\) seconds the speed of \(P\) is \(u \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and at time \(t = 4\) seconds the velocity of \(P\) is \(( 20 \mathbf { i } + 20 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\)
  2. Find the value of \(u\).
Edexcel M1 2018 Specimen Q5
10 marks Moderate -0.8
  1. Two forces, \(\mathbf { F } _ { 1 }\) and \(\mathbf { F } _ { 2 }\), act on a particle \(A\).
    \(\mathbf { F } _ { 1 } = ( 2 \mathbf { i } - 3 \mathbf { j } ) \mathrm { N }\) and \(\mathbf { F } _ { 2 } = ( p \mathbf { i } + q \mathbf { j } ) \mathrm { N }\), where \(p\) and \(q\) are constants.
    Given that the resultant of \(\mathbf { F } _ { 1 }\) and \(\mathbf { F } _ { 2 }\) is parallel to ( \(\mathbf { i } + 2 \mathbf { j }\) ),
    1. show that \(2 p - q + 7 = 0\)
    Given that \(q = 11\) and that the mass of \(A\) is 2 kg , and that \(\mathbf { F } _ { 1 }\) and \(\mathbf { F } _ { 2 }\) are the only forces acting on \(A\),
  2. find the magnitude of the acceleration of \(A\).
    \includegraphics[max width=\textwidth, alt={}, center]{6ab8838f-d6f8-4761-8def-1022d97d4e82-15_2255_51_314_36}
OCR MEI M1 2008 January Q2
7 marks Moderate -0.8
2 The force acting on a particle of mass 1.5 kg is given by the vector \(\binom { 6 } { 9 } \mathrm {~N}\).
  1. Give the acceleration of the particle as a vector.
  2. Calculate the angle that the acceleration makes with the direction \(\binom { 1 } { 0 }\).
  3. At a certain point of its motion, the particle has a velocity of \(\binom { - 2 } { 3 } \mathrm {~ms} ^ { - 1 }\). Calculate the displacement of the particle over the next two seconds.
OCR MEI M1 2005 June Q3
6 marks Moderate -0.8
3 A particle rests on a smooth, horizontal plane. Horizontal unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) lie in this plane. The particle is in equilibrium under the action of the three forces \(( - 3 \mathbf { i } + 4 \mathbf { j } ) \mathrm { N }\) and \(( 21 \mathbf { i } - 7 \mathbf { j } ) \mathrm { N }\) and \(\mathbf { R N }\).
  1. Write down an expression for \(\mathbf { R }\) in terms of \(\mathbf { i }\) and \(\mathbf { j }\).
  2. Find the magnitude of \(\mathbf { R }\) and the angle between \(\mathbf { R }\) and the \(\mathbf { i }\) direction.
OCR MEI M1 2008 June Q3
5 marks Moderate -0.8
3 An object of mass 5 kg has a constant acceleration of \(\binom { - 1 } { 2 } \mathrm {~m} \mathrm {~s} ^ { - 2 }\) for \(0 \leqslant t \leqslant 4\), where \(t\) is the time in seconds.
  1. Calculate the force acting on the object. When \(t = 0\), the object has position vector \(\binom { - 2 } { 3 } \mathrm {~m}\) and velocity \(\binom { 4 } { 5 } \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  2. Find the position vector of the object when \(t = 4\).
OCR MEI M1 2010 June Q3
8 marks Moderate -0.3
3 The three forces \(\left( \begin{array} { r } - 1 \\ 14 \\ - 8 \end{array} \right) \mathrm { N } , \left( \begin{array} { r } 3 \\ - 9 \\ 10 \end{array} \right) \mathrm { N }\) and \(\mathbf { F } \mathrm { N }\) act on a body of mass 4 kg in deep space and give it an acceleration of \(\left( \begin{array} { r } - 1 \\ 2 \\ 4 \end{array} \right) \mathrm { m } \mathrm { s } ^ { - 2 }\).
  1. Calculate \(\mathbf { F }\). At one instant the velocity of the body is \(\left( \begin{array} { r } - 3 \\ 3 \\ 6 \end{array} \right) \mathrm { m } \mathrm { s } ^ { - 1 }\).
  2. Calculate the velocity and also the speed of the body 3 seconds later.
OCR H240/03 2018 June Q8
6 marks Moderate -0.8
8 In this question \(\binom { 1 } { 0 }\) and \(\binom { 0 } { 1 }\) denote unit vectors which are horizontal and vertically upwards respectively.
A particle of mass 5 kg , initially at rest at the point with position vector \(\binom { 2 } { 45 } \mathrm {~m}\), is acted on by gravity and also by two forces \(\binom { 15 } { - 8 } \mathrm {~N}\) and \(\binom { - 7 } { - 2 } \mathrm {~N}\).
  1. Find the acceleration vector of the particle.
  2. Find the position vector of the particle after 10 seconds.
OCR H240/03 2019 June Q10
13 marks Standard +0.3
10 In this question the unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are in the directions east and north respectively.
A particle \(R\) of mass 2 kg is moving on a smooth horizontal surface under the action of a single horizontal force \(\mathbf { F }\) N. At time \(t\) seconds, the velocity \(\mathbf { v } \mathrm { ms } ^ { - 1 }\) of \(R\), relative to a fixed origin \(O\), is given by \(\mathbf { v } = \left( p t ^ { 2 } - 3 t \right) \mathbf { i } + ( 8 t + q ) \mathbf { j }\), where \(p\) and \(q\) are constants and \(p < 0\).
  1. Given that when \(t = 0.5\) the magnitude of \(\mathbf { F }\) is 20 , find the value of \(p\). When \(t = 0 , R\) is at the point with position vector \(( 2 \mathbf { i } - 3 \mathbf { j } ) \mathrm { m }\).
  2. Find, in terms of \(q\), an expression for the displacement vector of \(R\) at time \(t\). When \(t = 1 , R\) is at a point on the line \(L\), where \(L\) passes through \(O\) and the point with position vector \(2 \mathbf { i } - 8 \mathbf { j }\).
  3. Find the value of \(q\).
    \includegraphics[max width=\textwidth, alt={}, center]{7d1b7598-8f97-43a0-8366-efa8192d549e-09_544_1297_251_255} The diagram shows a ladder \(A B\), of length \(2 a\) and mass \(m\), resting in equilibrium on a vertical wall of height \(h\). The ladder is inclined at an angle of \(30 ^ { \circ }\) to the horizontal. The end \(A\) is in contact with horizontal ground. An object of mass \(2 m\) is placed on the ladder at a point \(C\) where \(A C = d\). The ladder is modelled as uniform, the ground is modelled as being rough, and the vertical wall is modelled as being smooth.
  4. Show that the normal contact force between the ladder and the wall is \(\frac { m g ( a + 2 d ) \sqrt { 3 } } { 4 h }\). It is given that the equilibrium is limiting and the coefficient of friction between the ladder and the ground is \(\frac { 1 } { 8 } \sqrt { 3 }\).
  5. Show that \(h = k ( a + 2 d )\), where \(k\) is a constant to be determined.
  6. Hence find, in terms of \(a\), the greatest possible value of \(d\).
  7. State one improvement that could be made to the model.
Edexcel AS Paper 2 2024 June Q3
5 marks Moderate -0.3
  1. \hspace{0pt} [In this question, \(\mathbf { i }\) and \(\mathbf { j }\) are perpendi cular unit vectors in a horizontal plane]
A particle P is moving on a smooth horizontal surface under the action of two forces.
Given that
  • the mass of P is 2 kg
  • the two forces are \(( 2 \mathbf { i } + 4 \mathbf { j } ) \mathrm { N }\) and \(( \mathbf { i } - 2 \mathbf { j } ) \mathrm { N }\), where C is a constant
  • the magnitude of the acceleration of P is \(\sqrt { 5 } \mathrm {~m} \mathrm {~s} ^ { - 2 }\)
    find the two possible values of C .
Edexcel Paper 3 2022 June Q3
9 marks Standard +0.3
  1. \hspace{0pt} [In this question, \(\mathbf { i }\) and \(\mathbf { j }\) are horizontal unit vectors.]
A particle \(P\) of mass 4 kg is at rest at the point \(A\) on a smooth horizontal plane.
At time \(t = 0\), two forces, \(\mathbf { F } _ { 1 } = ( 4 \mathbf { i } - \mathbf { j } ) \mathrm { N }\) and \(\mathbf { F } _ { 2 } = ( \lambda \mathbf { i } + \mu \mathbf { j } ) \mathrm { N }\), where \(\lambda\) and \(\mu\) are constants, are applied to \(P\) Given that \(P\) moves in the direction of the vector ( \(3 \mathbf { i } + \mathbf { j }\) )
  1. show that $$\lambda - 3 \mu + 7 = 0$$ At time \(t = 4\) seconds, \(P\) passes through the point \(B\).
    Given that \(\lambda = 2\)
  2. find the length of \(A B\).
OCR MEI AS Paper 1 2018 June Q3
3 marks Moderate -0.8
3 A particle is in equilibrium under the action of three forces in newtons given by $$\mathbf { F } _ { 1 } = \binom { 8 } { 0 } , \quad \mathbf { F } _ { 2 } = \binom { 2 a } { - 3 a } \quad \text { and } \quad \mathbf { F } _ { 3 } = \binom { 0 } { b } .$$ Find the values of the constants \(a\) and \(b\).
OCR MEI AS Paper 1 2019 June Q5
3 marks Moderate -0.8
5 In this question, the unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are horizontal and vertically upwards respectively. A particle has mass 2.5 kg .
  1. Write the weight of the particle as a vector. The particle moves under the action of its weight and two external forces ( \(3 \mathbf { i } - 2 \mathbf { j }\) ) N and \(( - \mathbf { i } + 18 \mathbf { j } ) N\).
  2. Find the acceleration of the particle, giving your answer in vector form.
OCR MEI AS Paper 1 2022 June Q7
4 marks Moderate -0.3
7 In this question the unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are directed east and north respectively. A canal narrowboat of mass 9 tonnes is pulled by two ropes. The tensions in the ropes are \(( 450 \mathbf { i } + 20 \mathbf { j } ) \mathbf { N }\) and \(( 420 \mathbf { i } - 20 \mathbf { j } ) \mathbf { N }\). The boat experiences a resistance to motion \(\mathbf { R }\) of magnitude 300 N .
  1. Explain what it means to model the boat as a particle. The boat is travelling in a straight line due east.
  2. Find the equation of motion of the boat.
  3. Find the acceleration of the boat giving your answer as a vector.
OCR MEI AS Paper 1 2020 November Q4
5 marks Moderate -0.8
4 In this question, the \(x\) and \(y\) directions are horizontal and vertically upwards respectively.
A particle of mass 1.5 kg is in equilibrium under the action of its weight and forces \(\mathbf { F } _ { 1 } = \binom { 4 } { - 2 } \mathrm {~N}\)
and \(\mathbf { F } _ { 2 }\). and \(\mathbf { F } _ { 2 }\).
  1. Find the force \(\mathbf { F } _ { 2 }\). The force \(\mathbf { F } _ { 2 }\) is changed to \(\binom { 2 } { 20 } \mathrm {~N}\).
  2. Find the acceleration of the particle.