Stacked blocks with friction

A question is this type if and only if it involves two or more blocks stacked on top of each other on a horizontal surface, where you must analyze forces and friction to determine if they move together or separately.

5 questions · Moderate -0.2

Sort by: Default | Easiest first | Hardest first
CAIE M1 2010 June Q7
9 marks Standard +0.3
7
\includegraphics[max width=\textwidth, alt={}, center]{dafc271d-a77b-4401-9170-e13e484d6e5f-4_246_665_253_739} Two rectangular boxes \(A\) and \(B\) are of identical size. The boxes are at rest on a rough horizontal floor with \(A\) on top of \(B\). Box \(A\) has mass 200 kg and box \(B\) has mass 250 kg . A horizontal force of magnitude \(P\) N is applied to \(B\) (see diagram). The boxes remain at rest if \(P \leqslant 3150\) and start to move if \(P > 3150\).
  1. Find the coefficient of friction between \(B\) and the floor. The coefficient of friction between the two boxes is 0.2 . Given that \(P > 3150\) and that no sliding takes place between the boxes,
  2. show that the acceleration of the boxes is not greater than \(2 \mathrm {~m} \mathrm {~s} ^ { - 2 }\),
  3. find the maximum possible value of \(P\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE M1 2004 November Q6
9 marks Standard +0.3
6
\includegraphics[max width=\textwidth, alt={}, center]{38ece0f6-1c29-4e7a-9d66-16c3e2b695f9-3_330_572_1037_788} Two identical boxes, each of mass 400 kg , are at rest, with one on top of the other, on horizontal ground. A horizontal force of magnitude \(P\) newtons is applied to the lower box (see diagram). The coefficient of friction between the lower box and the ground is 0.75 and the coefficient of friction between the two boxes is 0.4 .
  1. Show that the boxes will remain at rest if \(P \leqslant 6000\). The boxes start to move with acceleration \(a \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  2. Given that no sliding takes place between the boxes, show that \(a \leqslant 4\) and deduce the maximum possible value of \(P\).
OCR MEI M1 Q2
3 marks Easy -1.2
2 Fig. 1 shows a pile of four uniform blocks in equilibrium on a horizontal table. Their masses, as shown, are \(4 \mathrm {~kg} , 5 \mathrm {~kg} , 7 \mathrm {~kg}\) and 10 kg . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{82f933a6-c17e-4b41-ae2b-3cc9d0ba975c-1_405_573_1560_777} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} Mark on the diagram the magnitude and direction of each of the forces acting on the 7 kg block.
OCR MEI M1 2013 June Q1
3 marks Easy -1.2
1 Fig. 1 shows a pile of four uniform blocks in equilibrium on a horizontal table. Their masses, as shown, are \(4 \mathrm {~kg} , 5 \mathrm {~kg} , 7 \mathrm {~kg}\) and 10 kg . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{83e69140-4abf-4713-85da-922ce7530e47-2_400_568_434_751} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} Mark on the diagram the magnitude and direction of each of the forces acting on the 7 kg block.
OCR MEI Further Mechanics A AS 2021 November Q6
9 marks Standard +0.8
6 Fig. 6.1 shows a cross-section through a block of mass 5 kg which is on top of a trolley of mass 11 kg . The trolley is on top of a smooth horizontal surface. The coefficient of friction between the block and the trolley is 0.3 . Throughout this question you may assume that there are no other resistances to motion on either the block or the trolley. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5c1cfe41-d7a2-4f69-ae79-67d9f023c246-6_339_1317_552_294} \captionsetup{labelformat=empty} \caption{Fig. 6.1}
\end{figure} Initially, both the block and trolley are at rest. A constant force of magnitude 50 N is now applied horizontally to the trolley, as shown in Fig. 6.1.
  1. Show that in the subsequent motion the block will slide.
  2. Find the acceleration of
    1. the block,
    2. the trolley. The same block and trolley are again at rest. An obstruction, in the form of a fixed horizontal pole, is placed in front of the block, the pole is 91 cm above the trolley and the width of the block is 56 cm as shown in Fig. 6.2, as well as the forward direction of motion. \begin{figure}[h]
      \includegraphics[alt={},max width=\textwidth]{5c1cfe41-d7a2-4f69-ae79-67d9f023c246-6_426_1324_1793_269} \captionsetup{labelformat=empty} \caption{Fig. 6.2}
      \end{figure} It is given that the block is uniform and that the contact between the pole and the block is smooth. A small horizontal force is now applied to the trolley in the forward direction of motion and gradually increased.
  3. Determine whether the block will topple or slide.