Paired t-test

A question is this type if and only if it asks to perform a paired t-test on matched or repeated measures data, assuming normality of differences.

33 questions · Standard +0.4

Sort by: Default | Easiest first | Hardest first
Edexcel S4 2014 June Q4
9 marks Challenging +1.3
  1. A random sample of 8 people were given a new drug designed to help people sleep.
In a two-week period the drug was given for one week and a placebo (a tablet that contained no drug) was given for one week. In the first week 4 people, selected at random, were given the drug and the other 4 people were given the placebo. Those who were given the drug in the first week were given the placebo in the second week. Those who were given the placebo in the first week were given the drug in the second week. The mean numbers of hours of sleep per night for each of the people are shown in the table.
Person\(A\)\(B\)\(C\)\(D\)\(E\)\(F\)\(G\)\(H\)
Hours of sleep with drug10.87.28.76.89.410.911.17.6
Hours of sleep with placebo10.06.59.05.68.78.09.86.8
  1. State one assumption that needs to be made in order to carry out a paired \(t\)-test.
  2. Stating your hypotheses clearly, test, at the \(1 \%\) level of significance, whether or not the drug increases the mean number of hours of sleep per night by more than 10 minutes. State the critical value for this test.
Edexcel S4 2018 June Q3
10 marks Challenging +1.2
  1. A random sample of 8 students is selected from a school database.
Each student's reaction time is measured at the start of the school day and again at the end of the school day. The reaction times, in milliseconds, are recorded below.
StudentA\(B\)CD\(E\)\(F\)G\(H\)
Reaction time at the start of the school day10.87.28.76.89.410.911.17.6
Reaction time at the end of the school day106.18.85.78.78.19.86.8
  1. State one assumption that needs to be made in order to carry out a paired \(t\)-test.
    (1) The random variable \(R\) is the reaction time at the start of the school day minus the reaction time at the end of the school day. The mean of \(R\) is \(\mu\). John uses a paired \(t\)-test to test the hypotheses $$\mathrm { H } _ { 0 } : \mu = m \quad \mathrm { H } _ { 1 } : \mu \neq m$$ Given that \(\mathrm { H } _ { 0 }\) is rejected at the 5\% level of significance but accepted at the 1\% level of significance,
  2. find the ranges of possible values for \(m\).
Edexcel S4 Q2
8 marks Standard +0.3
2. An engineer decided to investigate whether or not the strength of rope was affected by water. A random sample of 9 pieces of rope was taken and each piece was cut in half. One half of each piece was soaked in water over night, and then each piece of rope was tested to find its strength. The results, in coded units, are given in the table below
Rope no.123456789
Dry rope9.78.56.38.37.25.46.88.15.9
Wet rope9.19.58.29.78.54.98.48.77.7
Assuming that the strength of rope follows a normal distribution, test whether or not there is any difference between the mean strengths of dry and wet rope. State your hypotheses clearly and use a \(1 \%\) level of significance.
(8 marks)
Edexcel FS2 2022 June Q4
8 marks Standard +0.8
  1. A doctor believes that a four-week exercise programme can reduce the resting heart rate of her patients. She takes a random sample of 7 patients and records their resting heart rate before the exercise programme and again after the exercise programme.
Patient\(A\)\(B\)C\(D\)\(E\)\(F\)\(G\)
Resting heart rate before65687779808892
Resting heart rate after63657376808480
  1. Using a \(5 \%\) level of significance, carry out an appropriate test of the doctor's belief. You should state your hypotheses, test statistic and critical value.
  2. State the assumption made about the resting heart rates that was required to carry out the test.
Edexcel FS2 2023 June Q5
9 marks Standard +0.3
  1. A psychologist claims to have developed a technique to improve a person's memory.
A random sample of 8 people are each given the same list of words to memorise and recall. Each person then receives memory training from the psychologist. After the training, each person is given the same list of new words to memorise and recall. The table shows the percentage of words recalled by each person before and after the training.
PersonA\(B\)C\(D\)E\(F\)G\(H\)
Percentage of words recalled before training2433333930383234
Percentage of words recalled after training2830374132443534
  1. State why a paired \(t\)-test is suitable for these data.
  2. State an assumption that needs to be made in order to carry out a paired \(t\)-test in this case.
  3. Test, at the \(5 \%\) level of significance, whether or not there is evidence of an increase in the percentage of words recalled after receiving the psychologist's training. State your hypotheses, test statistic and critical value used for this test.
Edexcel FS2 2024 June Q6
12 marks Standard +0.3
  1. A researcher set up a trial to assess the effect that a food supplement has on the increase in weight of Herdwick lambs. The researcher randomly selected 8 sets of twin lambs. One of each set of twins was given the food supplement and the other had no food supplement. The gain in weight, in kg, of each lamb over the period of the trial was recorded.
Set of twin lambsA\(B\)CD\(E\)\(F\)\(G\)\(H\)
\multirow{2}{*}{Weight gain (kg)}With food supplement4.15.36.03.65.94.27.16.4
No food supplement5.04.85.23.45.13.97.06.5
  1. State why a two sample \(t\)-test is not suitable for use with these data.
  2. Suggest 2 other factors about the lambs that the researcher may need to control when selecting the sample.
  3. State one assumption, in context, that needs to be made for a paired \(t\)-test to be valid. For a pair of twin lambs, the random variable \(W\) represents the weight gain of the lamb given the food supplement minus the weight gain of the lamb not given the food supplement.
  4. Using the data in the table, calculate a \(98 \%\) confidence interval for the mean of \(W\) Show your working clearly. The researcher believes that the mean of \(W\) is greater than 200 g
  5. Stating your hypotheses clearly, use your confidence interval to explain whether or not there is evidence to support the researcher's belief.
Edexcel S4 Q3
12 marks Standard +0.3
  1. The weights, in grams, of mice are normally distributed. A biologist takes a random sample of 10 mice. She weighs each mouse and records its weight.
The ten mice are then fed on a special diet. They are weighed again after two weeks.
Their weights in grams are as follows:
MouseA\(B\)CD\(E\)\(F\)G\(H\)\(I\)\(J\)
Weight before diet50.048.347.554.038.942.750.146.840.341.2
Weight after diet52.147.650.152.342.244.351.848.041.943.6
Stating your hypotheses clearly, and using a \(1 \%\) level of significance, test whether or not the diet causes an increase in the mean weight of the mice.
Edexcel S4 2002 June Q1
3 marks Standard +0.3
  1. The random variable \(X\) has an \(F\) distribution with 10 and 12 degrees of freedom. Find \(a\) and \(b\) such that \(\mathrm { P } ( a < X < b ) = 0.90\).
    (3)
  2. A chemist has developed a fuel additive and claims that it reduces the fuel consumption of cars. To test this claim, 8 randomly selected cars were each filled with 20 litres of fuel and driven around a race circuit. Each car was tested twice, once with the additive and once without. The distances, in miles, that each car travelled before running out of fuel are given in the table below.
Car12345678
Distance without additive163172195170183185161176
Distance with additive168185187172180189172175
Assuming that the distances travelled follow a normal distribution and stating your hypotheses clearly test, at the \(10 \%\) level of significance, whether or not there is evidence to support the chemist's claim.
(8)