Compare two Poisson means

A question is this type if and only if it requires testing whether two independent Poisson means are different, typically using normal approximation for the difference.

1 questions · Standard +0.8

Sort by: Default | Easiest first | Hardest first
AQA S3 2010 June Q3
7 marks Standard +0.8
3
The weekly number of hits, \(S\), on Sam's website may be modelled by a Poisson distribution with parameter \(\lambda _ { S }\). The weekly number of hits, \(T\), on Tina's website may be modelled by a Poisson distribution with parameter \(\lambda _ { T }\).
During a period of 40 weeks, the number of hits on Sam's website was 940.
During a period of 60 weeks, the number of hits on Tina's website was 1560.
Assuming that \(S\) and \(T\) are independent random variables, investigate, at the \(2 \%\) level of significance, Tina's claim that the mean weekly number of hits on her website is greater than that on Sam's website.
(7 marks)
\end{tabular}
\hline QUESTION PART REFERENCE &
\hline & \(\_\_\_\_\) \hline \multicolumn{2}{|c|}{}
\hline & \(\_\_\_\_\) \hline \multicolumn{2}{|c|}{}
\hline \multicolumn{2}{|c|}{}
\hline & \includegraphics[max width=\textwidth, alt={}]{b855b5b3-097e-4894-aaec-d77f515949b0-06_72_1707_1510_154}
\hline \multicolumn{2}{|c|}{}
\hline \multicolumn{2}{|c|}{}
\hline &
\hline & \(\_\_\_\_\) \hline \multicolumn{2}{|c|}{}
\hline & \(\_\_\_\_\) \hline \multicolumn{2}{|c|}{}
\hline & \(\_\_\_\_\) \hline \multicolumn{2}{|c|}{}
\hline & \includegraphics[max width=\textwidth, alt={}]{b855b5b3-097e-4894-aaec-d77f515949b0-06_107_1709_2445_152}
\hline \end{tabular} \end{center}
\includegraphics[max width=\textwidth, alt={}]{b855b5b3-097e-4894-aaec-d77f515949b0-07_2484_1709_223_153}