Sketch multiple separate transformations

Questions that provide a sketch of y = f(x) and ask students to sketch two or more translations on separate diagrams (e.g., both y = f(x)+a and y = f(x+b)), testing understanding of different translation types independently.

15 questions

Edexcel C12 2015 June Q12
12. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ea81408b-e292-4529-b1e2-e3246503a3ac-17_679_1241_274_500} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of part of the curve with equation \(y = \mathrm { f } ( x )\).
The curve crosses the \(x\)-axis at the origin and at the point \(( 6,0 )\). The curve has maximum points at \(( 1,6 )\) and \(( 5,6 )\) and has a minimum point at \(( 3,2 )\). On separate diagrams sketch the curve with equation
  1. \(y = - \mathrm { f } ( x )\)
  2. \(y = \mathrm { f } \left( \frac { 1 } { 2 } x \right)\)
  3. \(y = \mathrm { f } ( x + 4 )\) On each diagram show clearly the coordinates of the maximum and minimum points, and the coordinates of the points where the curve crosses the \(x\)-axis.
Edexcel C1 2008 January Q6
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ba0ee180-4c22-49f7-8a8e-a7268828b067-07_693_676_370_632} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\). The curve crosses the \(x\)-axis at the points \(( 1,0 )\) and \(( 4,0 )\). The maximum point on the curve is \(( 2,5 )\).
In separate diagrams sketch the curves with the following equations.
On each diagram show clearly the coordinates of the maximum point and of each point at which the curve crosses the \(x\)-axis.
  1. \(y = 2 \mathrm { f } ( x )\),
  2. \(y = \mathrm { f } ( - x )\). The maximum point on the curve with equation \(y = \mathrm { f } ( x + a )\) is on the \(y\)-axis.
  3. Write down the value of the constant \(a\).
Edexcel C1 2008 June Q3
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9451ec48-d955-44a8-9988-68f7c0fb9821-04_463_703_276_589} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\). The curve passes through the point ( 0,7 ) and has a minimum point at ( 7,0 ). On separate diagrams, sketch the curve with equation
  1. \(y = \mathrm { f } ( x ) + 3\),
  2. \(y = \mathrm { f } ( 2 x )\). On each diagram, show clearly the coordinates of the minimum point and the coordinates of the point at which the curve crosses the \(y\)-axis.
Edexcel C1 2010 June Q6
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{65d61b2c-2e47-402e-b08f-2d46bb00c188-08_568_942_269_498} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\). The curve has a maximum point \(A\) at \(( - 2,3 )\) and a minimum point \(B\) at \(( 3 , - 5 )\). On separate diagrams sketch the curve with equation
  1. \(y = \mathrm { f } ( x + 3 )\)
  2. \(y = 2 \mathrm { f } ( x )\) On each diagram show clearly the coordinates of the maximum and minimum points.
    The graph of \(y = \mathrm { f } ( x ) + a\) has a minimum at (3, 0), where \(a\) is a constant.
  3. Write down the value of \(a\).
Edexcel C3 2006 January Q1
1. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{5cd53af1-bac9-4ed9-ac45-59ad2e372423-02_689_766_276_594}
\end{figure} Figure 1 shows the graph of \(y = \mathrm { f } ( x ) , - 5 \leqslant x \leqslant 5\).
The point \(M ( 2,4 )\) is the maximum turning point of the graph.
Sketch, on separate diagrams, the graphs of
  1. \(y = \mathrm { f } ( x ) + 3\),
  2. \(y = | \mathrm { f } ( x ) |\),
  3. \(y = \mathrm { f } ( | x | )\). Show on each graph the coordinates of any maximum turning points.
Edexcel C3 2009 January Q3
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{502d98be-7013-4ce6-816b-27c671944503-04_767_913_246_511} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the graph of \(y = \mathrm { f } ( x ) , \quad 1 < x < 9\).
The points \(T ( 3,5 )\) and \(S ( 7,2 )\) are turning points on the graph.
Sketch, on separate diagrams, the graphs of
  1. \(y = 2 \mathrm { f } ( x ) - 4\),
  2. \(y = | \mathrm { f } ( x ) |\). Indicate on each diagram the coordinates of any turning points on your sketch.
Edexcel C3 2011 June Q3
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a0c2a69f-1196-4a07-a368-5dab3efaf316-04_460_725_260_607} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows part of the graph of \(y = \mathrm { f } ( x ) , x \in \mathbb { R }\). The graph consists of two line segments that meet at the point \(R ( 4 , - 3 )\), as shown in Figure 1. Sketch, on separate diagrams, the graphs of
  1. \(y = 2 \mathrm { f } ( x + 4 )\),
  2. \(y = | \mathrm { f } ( - x ) |\). On each diagram, show the coordinates of the point corresponding to \(R\).
Edexcel C3 2013 June Q2
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a80a71cb-42e0-4587-8f8e-bacd69b8d07a-03_499_1099_210_443} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { f } ( x ) , x > 0\), where f is an increasing function of \(x\). The curve crosses the \(x\)-axis at the point \(( 1,0 )\) and the line \(x = 0\) is an asymptote to the curve. On separate diagrams, sketch the curve with equation
  1. \(y = \mathrm { f } ( 2 x ) , x > 0\)
  2. \(y = | \mathrm { f } ( x ) | , x > 0\) Indicate clearly on each sketch the coordinates of the point at which the curve crosses or meets the \(x\)-axis.
Edexcel C3 Q6
6. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{ddc10fc0-f3f2-4c5f-b152-eba68a21990f-08_871_1495_286_273}
\end{figure} Figure 1 shows a sketch of part of the curve with equation \(y = \mathrm { f } ( x ) , x \in \mathbb { R }\). The curve has a minimum point at \(( - 0.5 , - 2 )\) and a maximum point at \(( 0.4 , - 4 )\). The lines \(x = 1\), the \(x\)-axis and the \(y\)-axis are asymptotes of the curve, as shown in Fig. 1. On a separate diagram sketch the graphs of
  1. \(y = | \mathrm { f } ( x ) |\),
  2. \(y = \mathrm { f } ( x - 3 )\),
  3. \(y = \mathrm { f } ( | x | )\). In each case show clearly
    1. the coordinates of any points at which the curve has a maximum or minimum point,
    2. how the curve approaches the asymptotes of the curve.
      6. continued
Edexcel C12 2019 June Q3
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{de511cb3-35c7-4225-b459-a136b6304b78-06_955_1495_217_226} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve with equation \(y = \mathrm { f } ( x )\).
The curve crosses the coordinate axes at the points \(( - 6,0 )\) and \(( 0,3 )\), has a stationary point at \(( - 3,9 )\) and has an asymptote with equation \(y = 1\) On separate diagrams, sketch the curve with equation
  1. \(y = - \mathrm { f } ( x )\)
  2. \(y = \mathrm { f } \left( \frac { 3 } { 2 } x \right)\) On each diagram, show clearly the coordinates of the points of intersection of the curve with the two coordinate axes, the coordinates of the stationary point, and the equation of the asymptote. \includegraphics[max width=\textwidth, alt={}, center]{de511cb3-35c7-4225-b459-a136b6304b78-07_2255_45_316_36}
OCR MEI C1 Q4
4
\includegraphics[max width=\textwidth, alt={}, center]{3b927f8b-ddf8-481d-a1ce-3b90bb1435f0-2_437_807_953_579} The graph shows a function \(y = \mathrm { f } ( x )\).
On separate graphs, sketch the graphs of the following functions:
  1. \(\quad y = \mathrm { f } ( x ) + 1\),
  2. \(y = \mathrm { f } ( x + 1 )\).
OCR MEI C1 Q4
4 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e93e3c51-ae2b-420b-abb8-bf0c483caff8-4_679_727_357_741} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure} Fig. 7 shows the graph of \(y = \mathrm { g } ( x )\). Draw the graphs of the following.
  1. \(y = \mathrm { g } ( x ) + 3\)
  2. \(y = \mathrm { g } ( x + 2 )\)
OCR MEI C1 2012 January Q7
7 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f138ed97-09ca-488e-8651-1217ac2d7b21-2_684_734_1537_662} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure} Fig. 7 shows the graph of \(y = \mathrm { g } ( x )\). Draw the graphs of the following.
  1. \(y = \mathrm { g } ( x ) + 3\)
  2. \(y = \mathrm { g } ( x + 2 )\)
OCR MEI C1 2014 June Q3
3 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2e8f2d63-8a25-4da2-8c3e-9e75ea1b7c08-2_798_819_836_623} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure} Fig. 3 shows the graph of \(y = \mathrm { f } ( x )\). Draw the graphs of the following.
  1. \(y = \mathrm { f } ( x ) - 2\)
  2. \(y = \mathrm { f } ( x - 3 )\)
Edexcel C1 2006 January Q6
  1. \(y = \mathrm { f } ( x + 1 )\),
  2. \(y = 2 \mathrm { f } ( x )\),
  3. \(y = \mathrm { f } \left( \frac { 1 } { 2 } x \right)\). On each diagram show clearly the coordinates of all the points where the curve meets the axes.