Single transformation sketches

Questions asking students to sketch one or two simple transformations (e.g., f(x+a), af(x), f(ax)) separately, typically with a smooth curve and turning points to track.

6 questions

Edexcel C1 2014 January Q4
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6081d81b-51d2-4140-9834-71ef7fd700b0-08_835_777_118_596} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of a curve with equation \(y = \mathrm { f } ( x )\). The curve crosses the \(y\)-axis at \(( 0,3 )\) and has a minimum at \(P ( 4,2 )\). On separate diagrams, sketch the curve with equation
  1. \(y = \mathrm { f } ( x + 4 )\),
  2. \(y = 2 \mathrm { f } ( x )\). On each diagram, show clearly the coordinates of the minimum point and any point of intersection with the \(y\)-axis.
OCR MEI C2 Q2
2 The diagram shows the graph of \(y = \mathrm { f } ( x )\). The graph passes through the point with coordinates \(( 0,2 )\).
\includegraphics[max width=\textwidth, alt={}, center]{1c52d6b5-84b4-455a-9620-c377ae457069-2_524_1350_775_346} On separate diagrams sketch the graphs of the following functions, indicating clearly the point of intersection with the \(y\) axis.
  1. \(\quad y = - \mathrm { f } ( x )\)
  2. \(y = f ( 3 x )\)
Edexcel M2 2014 January Q4
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e6a4beaa-2c1f-4a98-bc63-4ddb8611db45-08_835_777_118_596} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of a curve with equation \(y = \mathrm { f } ( x )\). The curve crosses the \(y\)-axis at \(( 0,3 )\) and has a minimum at \(P ( 4,2 )\). On separate diagrams, sketch the curve with equation
  1. \(y = \mathrm { f } ( x + 4 )\),
  2. \(y = 2 \mathrm { f } ( x )\). On each diagram, show clearly the coordinates of the minimum point and any point of intersection with the \(y\)-axis.
OCR C1 2010 January Q2
2
\includegraphics[max width=\textwidth, alt={}, center]{918d83c3-1608-4482-9d3d-8af05e65f353-2_330_681_390_731} The graph of \(y = \mathrm { f } ( x )\) for \(- 2 \leqslant x \leqslant 4\) is shown above.
  1. Sketch the graph of \(y = 2 \mathrm { f } ( x )\) for \(- 2 \leqslant x \leqslant 4\) on the axes provided.
  2. Describe the transformation which transforms the graph of \(y = \mathrm { f } ( x )\) to the graph of \(y = \mathrm { f } ( x - 1 )\).
Edexcel C1 Specimen Q2
  1. \(y = \mathrm { f } ( x + 1 )\),
  2. \(y = \mathrm { f } ( 2 x )\). On each diagram, show clearly the coordinates of the maximum point, and of each point at which the curve crosses the coordinate axes.
OCR H240/01 Q3
3 The diagram below shows the graph of \(y = \mathrm { f } ( x )\).
\includegraphics[max width=\textwidth, alt={}, center]{6c16d9e2-7698-48e4-a3ed-5aae3b6f041e-05_801_1483_413_251}
  1. On the diagram in the Printed Answer Booklet, draw the graph of \(y = \mathrm { f } \left( \frac { 1 } { 2 } x \right)\).
  2. On the diagram in the Printed Answer Booklet, draw the graph of \(y = \mathrm { f } ( x - 2 ) + 1\).