Vertical stretch y = af(x)

Questions asking to sketch y = af(x) where a is a constant multiplier, involving vertical stretches or compressions of the given curve.

7 questions

Edexcel C1 2005 June Q4
4. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{5a195cf1-37d9-43e9-ab47-c6892a18ba80-05_689_920_292_511}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\). The curve passes through the origin \(O\) and through the point \(( 6,0 )\). The maximum point on the curve is \(( 3,5 )\). On separate diagrams, sketch the curve with equation
  1. \(y = 3 \mathrm { f } ( x )\),
  2. \(y = \mathrm { f } ( x + 2 )\). On each diagram, show clearly the coordinates of the maximum point and of each point at which the curve crosses the \(x\)-axis.
Edexcel C1 2016 June Q4
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b0413ecc-b780-4f77-b76a-da7c699c12cb-05_709_744_269_607} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve with equation \(y = \mathrm { f } ( x )\). The curve has a maximum point \(A\) at \(( - 2,4 )\) and a minimum point \(B\) at \(( 3 , - 8 )\) and passes through the origin \(O\). On separate diagrams, sketch the curve with equation
  1. \(y = 3 \mathrm { f } ( x )\),
  2. \(y = \mathrm { f } ( x ) - 4\)
    (3) On each diagram, show clearly the coordinates of the maximum and the minimum points and the coordinates of the point where the curve crosses the \(y\)-axis.
OCR C1 2007 June Q2
2
  1. On separate diagrams, sketch the graphs of
    1. \(\mathrm { y } = \frac { 1 } { \mathrm { x } }\),
    2. \(y = x ^ { 4 }\).
  2. Describe a transformation that transforms the curve \(y = x ^ { 3 }\) to the curve \(y = 8 x ^ { 3 }\).
OCR C1 Q5
5.
\includegraphics[max width=\textwidth, alt={}]{129a65ac-e77c-4274-a2b9-18825ea2302c-1_547_936_1407_351}
The diagram shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\). The curve has a maximum at \(( - 3,4 )\) and a minimum at \(( 1 , - 2 )\). Showing the coordinates of any turning points, sketch on separate diagrams the curves with equations
  1. \(\quad y = 2 \mathrm { f } ( x )\),
  2. \(y = - \mathrm { f } ( x )\).
OCR MEI C2 2008 January Q4
4 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{15872003-2e41-47e9-a5bd-34e533768f8a-2_625_869_1155_639} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Fig. 4 shows a sketch of the graph of \(y = \mathrm { f } ( x )\). On separate diagrams, sketch the graphs of the following, showing clearly the coordinates of the points corresponding to \(\mathrm { A } , \mathrm { B }\) and C .
  1. \(y = 2 \mathrm { f } ( x )\)
  2. \(y = \mathrm { f } ( x + 3 )\)
OCR MEI C2 Q13
13 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{669be128-491c-4152-8f3a-e37a34dd9383-7_618_867_267_679} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Fig. 4 shows a sketch of the graph of \(y = \mathrm { f } ( x )\). On separate diagrams, sketch the graphs of the following, showing clearly the coordinates of the points corresponding to \(\mathrm { A } , \mathrm { B }\) and C .
  1. \(y = 2 \mathrm { f } ( x )\)
  2. \(y = \mathrm { f } ( x + 3 )\)
Edexcel C1 Q4
4. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{307d6e38-b8ca-4473-9f1a-94c8660c0d9c-006_689_920_292_511}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\). The curve passes through the origin \(O\) and through the point \(( 6,0 )\). The maximum point on the curve is \(( 3,5 )\). On separate diagrams, sketch the curve with equation
  1. \(y = 3 \mathrm { f } ( x )\),
  2. \(y = \mathrm { f } ( x + 2 )\). On each diagram, show clearly the coordinates of the maximum point and of each point at which the curve crosses the \(x\)-axis.