Derive CDF from PDF

A question is this type if and only if it asks to find the cumulative distribution function by integrating a given probability density function.

3 questions

CAIE FP2 2012 November Q6
6 The random variable \(X\) has probability density function f given by $$\mathrm { f } ( x ) = \begin{cases} \frac { 1 } { 6 } \mathrm { e } ^ { - \frac { 1 } { 6 } x } & x \geqslant 0
0 & \text { otherwise } \end{cases}$$ Find
  1. the distribution function of \(X\),
  2. the probability that \(X\) lies between the median and the mean.
CAIE FP2 2017 November Q7
7 The random variable \(X\) has probability density function f given by $$\mathrm { f } ( x ) = \begin{cases} 0.2 \mathrm { e } ^ { - 0.2 x } & x \geqslant 0
0 & \text { otherwise } \end{cases}$$
  1. Find the distribution function of \(X\).
  2. Find \(\mathrm { P } ( X > 2 )\).
  3. Find the median of \(X\).
AQA Further Paper 3 Statistics 2022 June Q3
3 marks
3 The random variable \(X\) has an exponential distribution with probability density function \(\mathrm { f } ( x ) = \lambda \mathrm { e } ^ { - \lambda x }\) where \(x \geq 0\) 3
  1. Show that the cumulative distribution function, for \(x \geq 0\), is given by \(\mathrm { F } ( x ) = 1 - \mathrm { e } ^ { - \lambda x }\)
    [0pt] [3 marks]
    3
  2. Given that \(\lambda = 2\), find \(\mathrm { P } ( X > 1 )\), giving your answer to three decimal places.