Find PGF of sum of independent variables

Given PGFs of independent random variables, find the PGF of their sum by multiplying the individual PGFs.

1 questions

CAIE Further Paper 4 2020 June Q4
3 marks
4 The discrete random variable \(X\) has probability generating function \(\mathrm { G } _ { \mathrm { X } } ( \mathrm { t } )\) given by $$G _ { X } ( t ) = 0.2 t + 0.5 t ^ { 2 } + 0.3 t ^ { 3 }$$ The random variable \(Y\) is the sum of two independent observations of \(X\).
  1. Find the probability generating function of \(Y\), giving your answer as an expanded polynomial in \(t\). [3]
  2. Use the probability generating function of \(Y\) to find \(\mathrm { E } ( Y )\) and \(\operatorname { Var } ( Y )\).