Edexcel P4 2023 January — Question 4

Exam BoardEdexcel
ModuleP4 (Pure Mathematics 4)
Year2023
SessionJanuary
TopicIntegration by Parts

  1. (a) Using the substitution \(u = \sqrt { 2 x + 1 }\), show that
$$\int _ { 4 } ^ { 12 } \sqrt { 8 x + 4 } \mathrm { e } ^ { \sqrt { 2 x + 1 } } \mathrm {~d} x$$ may be expressed in the form $$\int _ { a } ^ { b } k u ^ { 2 } \mathrm { e } ^ { u } \mathrm {~d} u$$ where \(a\), \(b\) and \(k\) are constants to be found.
(b) Hence find, by algebraic integration, the exact value of $$\int _ { 4 } ^ { 12 } \sqrt { 8 x + 4 } e ^ { \sqrt { 2 x + 1 } } d x$$ giving your answer in simplest form.