| Exam Board | Edexcel |
| Module | C34 (Core Mathematics 3 & 4) |
| Year | 2019 |
| Session | January |
| Topic | Fixed Point Iteration |
11. (a) Given that \(0 \leqslant \mathrm { f } ( x ) \leqslant \pi\), sketch the graph of \(y = \mathrm { f } ( x )\) where
$$\mathrm { f } ( x ) = \arccos ( x - 1 ) , \quad 0 \leqslant x \leqslant 2$$
The equation \(\arccos ( x - 1 ) - \tan x = 0\) has a single root \(\alpha\).
(b) Show that \(0.9 < \alpha < 1.1\)
The iteration formula
$$x _ { n + 1 } = \arctan \left( \arccos \left( x _ { n } - 1 \right) \right)$$
can be used to find an approximation for \(\alpha\).
(c) Taking \(x _ { 0 } = 1.1\) find, to 3 decimal places, the values of \(x _ { 1 }\) and \(x _ { 2 }\)