Edexcel C34 2019 January — Question 11

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2019
SessionJanuary
TopicFixed Point Iteration

11. (a) Given that \(0 \leqslant \mathrm { f } ( x ) \leqslant \pi\), sketch the graph of \(y = \mathrm { f } ( x )\) where $$\mathrm { f } ( x ) = \arccos ( x - 1 ) , \quad 0 \leqslant x \leqslant 2$$ The equation \(\arccos ( x - 1 ) - \tan x = 0\) has a single root \(\alpha\).
(b) Show that \(0.9 < \alpha < 1.1\) The iteration formula $$x _ { n + 1 } = \arctan \left( \arccos \left( x _ { n } - 1 \right) \right)$$ can be used to find an approximation for \(\alpha\).
(c) Taking \(x _ { 0 } = 1.1\) find, to 3 decimal places, the values of \(x _ { 1 }\) and \(x _ { 2 }\)