Edexcel C2 2011 June — Question 8

Exam BoardEdexcel
ModuleC2 (Core Mathematics 2)
Year2011
SessionJune
TopicDifferentiation Applications
TypeProve constraint relationship

8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c9758792-ca4c-4837-bd7c-e695fe0c0cdf-12_662_719_127_609} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} A cuboid has a rectangular cross-section where the length of the rectangle is equal to twice its width, \(x \mathrm {~cm}\), as shown in Figure 2.
The volume of the cuboid is 81 cubic centimetres.
  1. Show that the total length, \(L \mathrm {~cm}\), of the twelve edges of the cuboid is given by $$L = 12 x + \frac { 162 } { x ^ { 2 } }$$
  2. Use calculus to find the minimum value of \(L\).
  3. Justify, by further differentiation, that the value of \(L\) that you have found is a minimum.