Edexcel P2 2022 June — Question 10

Exam BoardEdexcel
ModuleP2 (Pure Mathematics 2)
Year2022
SessionJune
TopicCircles

10. The circle \(C\) has centre \(X ( 3,5 )\) and radius \(r\) The line \(l\) has equation \(y = 2 x + k\), where \(k\) is a constant.
  1. Show that \(l\) and \(C\) intersect when $$5 x ^ { 2 } + ( 4 k - 26 ) x + k ^ { 2 } - 10 k + 34 - r ^ { 2 } = 0$$ Given that \(l\) is a tangent to \(C\),
  2. show that \(5 r ^ { 2 } = ( k + p ) ^ { 2 }\), where \(p\) is a constant to be found. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{db4ec300-8081-4d29-acd5-0aae789d8f95-28_636_572_902_687} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure} The line \(l\)
    • cuts the \(y\)-axis at the point \(A\)
    • touches the circle \(C\) at the point \(B\)
      as shown in Figure 2.
      Given that \(A B = 2 r\)
    • find the value of \(k\)